
Identifying Incoherent Search Sessions: Search Click Fraud Remediation Under
Real-World Constraints

Runze Zhang1, Ranjita Pai Sridhar2, Mingxuan Yao1, Zheng Yang1, David Oygenblik1, Haichuan Xu1,

Vacha Dave2, Cormac Herley2, Paul England2∗, Brendan Saltaformaggio1

1Georgia Institute of Technology 2Microsoft Corporation

Abstract—Search engines and advertisers continuously suffer
substantial financial losses from click fraud, which poses
challenges to existing detection algorithms. Even more
concerning, despite ongoing advancements, our understanding
of click fraud remains limited, leaving room for sophisticated
fraudulent techniques to bypass existing detection measures.
In this study, we pivot from examining individual search
requests to analyzing search sessions, defined as sequences of
consecutive search queries made by the same user. We found
that benign users exhibit coherent behavior patterns within
these sessions, which contrast clearly with those of fraudulent
actors. Specifically, legitimate users tend to conduct searches
focused on a single topic at a time. In contrast, fraudsters or
automated bots often exhibit diverse, illogical, and incoherent
search behaviors within a session. To address this behavioral
distinction, we propose COSEC, a system designed to quantify
the “incoherence index” of search sessions. COSEC integrates
literal semantic, temporal, and ad-click behavioral features to
evaluate sessions’ coherence quantitatively. Our evaluation of
COSEC demonstrates high efficacy, achieving a precision of
95.79% and a recall of 92.40% in identifying incoherent
sessions, highlighting COSEC ’s substantial potential to
enhance real-world click fraud detection.

1. Introduction

Search engines primarily monetize their platforms
through advertising, which constitutes over 40% of the
digital advertising market share in the U.S. [1]. These
platforms display ads customized to user queries and charge
advertisers based on clicks or impressions. However,
advertisers increasingly encounter fraudulent ad-click traffic,
risking the depletion of their ad budgets. Reports indicate
that click fraud caused $84 billion in losses for online
advertisers in 2023, with approximately 14% of search ad
engagements driven by fraudsters [2], [3]. Without effective
methods to identify and prevent payments for fraudulent
traffic, search engines risk losing customers due to
unsatisfactory advertising outcomes.

Porting traditional click fraud detection methods to
search engines presents unresolved research challenges [4].
For instance, ViceROI [5] leveraged aggregated statistical

* Work performed while the author was with Microsoft.

features from scaled search engine traffic to pinpoint
websites collaborating with fraudsters for profit through
fraudulent ad clicks. Unfortunately, as acknowledged in [5],
[6], labeling traffic at a website level is course-grained,
leading to false negatives (fraudulent websites frequented
by benign users) and false positives (benign websites
frequented by both fraudsters and good users). Thus, search
engines must employ finer-grained techniques to label
individual requests or user profiles.

However, search engines encounter unique challenges in
fine-grained fraudulent traffic detection. Ideally, they could
leverage existing machine learning algorithms [7]–[11] to
detect ad clicks using features from request content (such
as IP address, user agent, and device information) or
statistical features from consecutive requests (like click
frequency and total spanning time). Unfortunately, studies
by Zhu et al. [12] and Szurdi et al. [13] revealed that these
features are unreliable due to manipulation by fraud
campaigns. Mobile in-app ad networks combat manipulated
traffic with client-side fingerprint data from enforced
SDKs [12], [14]–[17]. However, search engines, which
operate primarily within browsers, lack the infrastructure to
collect client-side information like user interface layout and
bot execution traces. As a result, they have limited visibility
and integrity guarantees for gathering confidential features
in fine-grained click fraud detection.

This led us to a fundamental question: How can search
engines effectively combat click fraud? Our collaborator,
Microsoft, provided a unique opportunity to delve into
real-world ad-click traffic from a top search engine. By
analyzing real-time traffic, we gained insights into
fraudsters’ strategies for generating fraudulent traffic and
evading detection. We noticed that search engines could
identify user-level search sessions, i.e., consecutive queries
submitted by each unique user’s cookie. By examining
timestamped consecutive search queries within these
sessions, we uncovered an invariant feature that
distinguishes organic users from fraudsters. The key lies in
coherence: Humans typically have a single train of thought,
and their search behavior tends to produce coherent
consecutive queries, while bots generate incoherent query
sequences to maximize revenue or engage targeted ads.

Building upon this key insight, we hypothesize that search
engines can improve fraud detection by holistically analyzing
the user sessions alongside individual click and pageview

93

2025 IEEE Symposium on Security and Privacy (SP)

© 2025, Runze Zhang. Under license to IEEE.
DOI 10.1109/SP61157.2025.00111

Search Fraud Bot Untrusted Search Web Interface
(Publisher)

Backend
Search Engine Advertiser

① Advertiser Placing Ads

② User Send Search Request

Query, Cookie, User-Agent

Ads Link, Bidding Keywords
③ Publisher Reques Search Result

Query, Cookie, Publisher Id,
User-Agent

④ Search Engine Return
Search Results With Ads

Search Engine Result Page with Ads
⑤ Publisher Render Result

Page to User/Fraudster
Search Engine Result Page with Ads

⑥ User/Fraudster Click Ads Link

Ad link clicking, Cookie, Publisher Id,
User-Agent

⑦ Search Engine Logs Ad Click And
 Redirects Ad Link to Advertiser

⑧ User / Fraudster Engages With
Advertiser's Pages

Advertiser's Webpage Link

Request to Advertiser's Webpage Link

Figure 1: Search Ad-click Fraud Ecosystem. Each arrow
represents network requests between entities with transferred
information labeled below. Untrusted traffic is in red.

events. To this end, we propose COSEC1, an incoherence
measurement framework for session-level fraud detection.
COSEC takes the raw search engine traffic as input, identifies
search sessions from each user, and extracts literal semantic,
temporal, and ad-click behavioral features from any given
user’s search sessions. It then uses a lightweight sequential
classifier to derive a search session’s incoherence index,
which infers whether a search session is fraudulent.

We evaluated COSEC on our collaborator’s data and
achieved 95.79% precision and 92.40% recall. Additionally,
we show that COSEC’s performance remains robust despite
concept drift. It maintains a high accuracy of 92.34% on a
different dataset collected one month after the training
datasets were collected. Furthermore, we reveal that
fraudsters use cutting-edge evasion logic and demonstrate
COSEC to successfully detect this traffic, even though they
are actively modifying search queries to build "coherent"
sessions. Finally, we made COSEC’s prototype available at
https://github.com/CyFI-Lab-Public/COSEC.

2. Motivation

We start with reviewing the background of the search
ad ecosystem with a click fraud scenario and fraudsters’
motivation in §2.1. We detail the limitations of applying
state-of-the-art (SOTA) works to flag search click fraud
in §2.2. We present our greatest insight in §2.3 and provide
a proof-of-concept measurement using COSEC in §2.4.

2.1. Click Fraud Ecosystem For Search Engines

Figure 1 presents a simplified model of the search ad’s
ecosystem, incorporating a typical click fraud scenario. In this
model, the Backend Search Engine (Column 3 in Figure 1)
generates search results and ads from Advertisers (Column 4)
to the search web interface, which is typically a client-facing
publisher. This interface, which may be owned either by
the search engine (e.g., Google.com, Bing.com) or by a

1. COSEC: Coherence Sequence Classifier

third-party sub-syndicator (e.g., Ask.com sub-syndicating
Google’s results [18]), connects users to search results and
ads. In the context of click fraud, an Untrusted Search Web
Interface (Column 2) represents third-party publishers that
may attempt to drive fraudulent ad clicks to increase revenue.
Such untrusted publishers may also employ Search Fraud
Bots (Column 1 in Figure 1) to inflate ad-click volumes.
These bots may operate as manipulated botnets [19] and
click farms [5], [12]. In Figure 1, we differentiate requests
from fraudulent sources (in red) from those originating from
legitimate sources (in blue). Pearce et al. [19] provides further
insights into fraudsters’ motivations.

Initially, advertisers submit bidding keywords to the
backend search engine (1), enabling ad targeting aligned
with user searches. Subsequently, a fraud bot initiates a
search query on the publisher site (2), sending data such
as keywords, cookies, and user agents. This request,
enriched with telemetry data from the bot, is transmitted to
the backend search engine (3). The backend then responds
with search results and ads (4 and 5), which are
displayed to the bot on the publisher’s site. The ad URL
includes the publisher’s ID, linking ad engagements back to
the publisher. When the fraud bot clicks an ad (6), it sends
details such as cookies, user agents, and publisher IDs,
enabling the backend to attribute the ad engagement to the
publisher and allocate ad revenue accordingly. Upon
logging the click, the backend redirects the bot to the
advertiser’s page (7), facilitating a visit to the advertiser’s
site (8). Notably, bots can also interact directly with
publisher websites owned by search engines, although these
attacks lack a sustainable monetization model, limiting their
scalability. This scenario is further discussed in §5.2.

2.2. Limited Fraud Detection By Statistical Method

As highlighted by previous studies [12], [20], fraudsters
manipulate traffic and obscure their real IP addresses
behind IP proxies, making features from individual search
requests unreliable. To derive more robust information from
traffic data, several studies [7], [12], [21] leverage
aggregated statistical features of sessions to enhance fraud
detection. These features capture statistical measures across
requests within a session, such as click frequency [21] and
mobile app active times [12]. In alignment with this
approach, we started by examining whether such aggregated
features could effectively enable search engines to
distinguish fraudulent traffic from organic traffic. For our
preliminary analysis, we utilized traffic data provided by
our collaborator, collected in February 2024. This dataset
includes both fraudulent traffic flagged by our collaborator
and organic traffic for comparison. We sampled 10,000
fraudulent sessions and 10,000 organic sessions from this
dataset, with sessions identified using user cookies.

Aggregated Statistic Measurement. Our experiment
begins with evaluating six statistical metrics relevant to
click fraud detection: (1) session length, (2) count of
distinct IP addresses per session, (3) average time interval
between search requests in a session, (4) standard deviation

94

Figure 2: Statistic Measurements Between Organic Sessions
and Fraudulent Sessions. The significant overlapping makes
fine-grained click fraud detection impossible.

of time intervals between search requests, (5) total session
time span, and (6) total click count. These metrics were
applied to the dataset. The distributions for these
session-based metrics are shown in Figure 2.

The results reveal two key insights. On a positive note,
search engines can detect noticeable differences in
session-level aggregated features between fraudulent and
organic traffic. By applying techniques from ViceROI [5],
search engines can aggregate these features at the publisher
level and identify unethical publishers as primary sources of
fraudulent traffic. However, the significant overlap in each
metric between fraudulent and organic traffic, as shown
in Figure 2, highlights a challenge. These metrics alone are
insufficient for search engines to reliably distinguish
fraudulent traffic from organic traffic at a granular level.
Consequently, search engines must consider additional
methods beyond session-level temporal and ad-click
behavior features to improve fraud detection accuracy.

2.3. Key Insight: Session (In)coherence

A distinctive characteristic of the search click fraud
scenario caught our attention: the necessity of search
queries to generate search result pages and ad links for
fraudulent clicking. We hypothesized that these search
queries could provide search engines with unique indicators
to detect fraudulent traffic. Additionally, as highlighted
in [5], [22], fraudsters often generate specific search queries
targeting ad clicks associated with higher profitability. To
explore this hypothesis, we began our investigation by
examining random sessions from the dataset, showcasing
examples from both organic and fraudulent traffic
in Table 1. Columns 1-3 list the queries, timestamps, and
ad counts returned by search engines, respectively.

TABLE 1: SEARCH SESSION EXAMPLES.

Query Keyword Time Stamp # Ads

Fraudulent Session Example∗, Cosine Similarity Score: 0.089

top 10 mba online programs† 23:16:32 7
suburbs near shorewood illinois 00:04:05 3
best roblox extension 00:11:18 0
digi canaan 00:16:53 1
brick rigs steam grid 00:30:20 0
best of bowie and queen 00:48:10 0
jessica virginia beach storm 00:55:05 0
you cook by yourself 00:57:08 3

Fraudulent Session Example 1∗, Cosine Similarity Score: 0.364

fractional reserve banking 11:58:12 1
Reserve requirement Wikipedia 11:58:45 0
pet friendly vacations near me 12:02:02 7
pet friendly vacations near me 12:02:04 4
pet friendly vacations near me 12:02:05 4
live edge lumber near me 12:22:01 0

mendels genetics† 12:22:03 10

rolex explorer† 13:13:14 26

Organic Session Example 1∗, Cosine Similarity Score: 0.687

home pack 5kg cement mortar mix 03:37:13 2
home pack 5kg cement mortar mix 03:41:09 3
cement mortar mix 03:55:17 2
dry mortar mix for blocks 04:10:52 3
paint paddle mixer for drill 04:17:30 3
cement paddle mixer for drill 04:24:39 4

Organic Session Example 2∗, Cosine Similarity Score: 0.596

openssl exportpem to pfx
without private key

11:14:36 0

openssl export password 11:22:11 0
extract private key form pfx 11:28:43 0
windows 2016 server request
new certificate

11:43:20 0

windows 2016 server request
new certificate 256 bit

11:45:04 0

*: The example sessions were fabricated to protect users’ identity.
†: search queries that result in more ads in search result pages.

Our analysis of fraudulent traffic sessions revealed
numerous sessions populated with unrelated queries,
suggesting that fraudsters may use randomized keywords to
diversify queries and obscure high-value search terms (i.e.,
queries that yield more ads for click manipulation), as
shown by the highlighted rows in Table 1. In contrast, the
organic sessions in Table 1 generally focus on specific
topics, with queries directed toward relevant results. This
observation led to the critical insight driving our research:
from a search engine’s perspective, click fraud can be
identified through features derived from consecutive search
queries within each session. We further define the
difference in the query coherence across fraudulent and
organic sessions as session (in)coherence.

2.4. Detection with Cosine Similarity vs. COSEC

While an experienced fraud investigator may quickly
identify fraudulent search queries, scaling this approach to
flag fraudulent traffic automatically remains challenging.
Search queries are in natural language, yet most detection
algorithms perform best with numerical inputs, requiring

95

Figure 3: The Scatter and Histogram Distribution of Average
Cosine Similarity (X-Axis) and COSEC’s Incoherence
Indexes (Y-Axis) from Both Fraudulent and Organic Sessions.
There is significant overlapping between fraudulent and
organic sessions’ average cosine similarity distribution, while
COSEC’s incoherence indexes are clearly separated.

the encoding of queries into numerical scales or vectors.
Fortunately, recent advancements in word- and
sentence-level embeddings [23], [24] allow us to encode
each query into a numerical vector. We then calculate the
cosine similarity (CS) [25] between pairs of query vectors
to quantify the similarity between two queries. For each
session, we compute the average CS by averaging the
similarities between consecutive queries.

The top histogram in Figure 3 shows the average CS of
our preliminary dataset. A notable gap appears between the
average CS values of organic and fraudulent sessions, with
fraudulent sessions showing a significantly lower average
CS. This aligns with our observation that fraudsters use
randomized search queries to obscure high-value search
terms. However, a significant overlap remains between
organic and fraudulent sessions. In examining overlapping
cases of fraudulent traffic, we found patterns similar to the
fraudulent session 2 in Table 1. Fraudsters employed both
similar (Rows 1 and 2) and repeated (Rows 3-5) search
queries within a session, artificially inflating the average CS.
This suggests that if search engines rely solely on sessions’
average CS as a detection feature, fraudsters could evade
detection by randomly repeating queries within a session.

The key insight is that even with a high average CS,
queries in fraudulent sessions often lack logical
coherence—a discrepancy that experienced investigators can
identify. Human investigators rely on the fine-grained
semantic (in)coherence among queries rather than the
similarity metrics to detect fraudulent traffic. Such nuanced
context is challenging for statistical algorithms and existing
machine learning models to capture effectively. This
challenge motivated the design of COSEC, which integrates

TABLE 2: SYMBOLS & DEFINITIONS IN §3.

Symbol Description Type

Search Request Page (P)

uid User ID ID
q Search query string string
t Timestamp of the search request timestamp
tint Time Interval with previous request in second int
anum Number of Ads returned on the page int
cnum Count of ad clicks on the page int
r Revenue generated by ad clicks in this page float
pn Page number of the search result int
ua User-Agent string
ip IP Address string
{AC} Set of ad click requests on this search page Set

Session (S)

uid User ID ID
{Pi|i ∈ [1, l]} Set of consecutive search pages Set

literal semantics, temporal patterns, and ad-click behavioral
information from search sessions to detect fraudulent traffic.
COSEC addresses the challenges of encoding these
multidimensional features by sequentially interpreting each
search request in a session. This enables COSEC to capture
both session-level context and individual request-level
information, deriving the sessions’ incoherence index,
which reflects the session’s overall coherence.

As a proof of concept, we applied COSEC to the
preliminary dataset to compute the incoherence index for
each session. Combining this distribution with the average
CS distribution, we plotted the scatter distribution
in Figure 3, where each point represents a session’s average
CS (X-axis) and incoherence index (Y-axis). The histogram
on the right illustrates the distribution of COSEC’s
incoherence index, revealing a more distinct separation
between organic and fraudulent sessions. This clear
distinction allows search engines to set a decision boundary
that flags fraudulent traffic with minimal false positives and
false negatives. Next, we detail COSEC’s methodology
in §3, COSEC’s automated dataset collection procedure
in §4, and we evaluate COSEC’s performance in §5. We
specifically compare the performance of COSEC with
machine learning models that use statistical features in §5.4.

3. Methodology

Overview. Motivated by the ultimate goal of detecting
fraudulent activities through the incoherence of search
sessions, Figure 4 presents the end-to-end pipeline of
COSEC in three distinct steps. First, COSEC organizes and
segments the search sessions from individual search
requests (§3.1). Next, COSEC extracts and encodes the
multidimensional features using the Multidimensional
Semantic Feature Encoder (§3.2). Finally, COSEC feeds the
encoded sequential feature vectors into the Incoherence
Index Evaluator (detailed in §3.3) to predict the
incoherence index. Symbols used throughout this section
are summarized in Table 2 for reference.

96

Figure 4: COSEC’s Pipeline Overview.

3.1. Session Generation

By taking the raw search and ad-click request logs as
input, the initial step of COSEC is to generate search
sessions from these raw traffic logs. COSEC generates
sessions by tracking traffic with cookies enabled by the
publisher’s website. For session management, non-persistent
session cookies are generally classified as "strictly
necessary first-party cookies" and do not require user
consent under GDPR [26]. As a result, organic users are
generally advised to enable these first-party cookies on
search websites. From a fraudster’s perspective, traffic
without valid cookie information is more likely to be
flagged as abnormal or bot traffic. Consequently, fraudsters
must mimic benign user behavior by setting valid cookies.
We further discuss countermeasures against fraudsters who
attempt to manipulate or invalidate cookies to disrupt
COSEC’s session-generation methodology in §7.2.

Algorithm 1 summarizes COSEC’s session-generation
procedures, comprising two steps: session aggregation and
session slicing, as shown in Figure 4. COSEC generates
sessions from raw traffic logs, where the input is a list of
search request pages, denoted by Pages. Additionally,
COSEC utilizes a predefined threshold T for session slicing.
First, COSEC sorts and groups the pages by the users’
identifier (uid in Line 3 - Line 4). Next, COSEC
enumerates each grouped page list (in Line 5) and sorts the
pages by the request’s timestamp t (Line 6). At this point,
COSEC completes the session aggregation step by
organizing and ordering pages for each user. For session
slicing, COSEC processes each search request page P in
the list, obtaining ad-click behavioral information (Line 10)
and calculating the time interval relative to the previous
request (if one exists) in Line 14. If the time interval
surpasses the threshold T , COSEC divides the sequence of
requests into two sessions (Line 11). Finally, COSEC
outputs all the sliced sessions Line 20.

Another challenge lies in determining the optimal
timeout threshold for session slicing. COSEC addresses this
by conducting our additional preliminary measurement, as
detailed in §A. As a result, COSEC utilizes a 60-minute
threshold, providing the best capability to measure the
incoherence index for both fraudulent and organic sessions.
Additionally, even when a session is sliced based on the
time interval between two requests, search engines may still
encounter cases where users, or more commonly bots,
continue generating search requests, resulting in unusually
long sessions. To manage such cases, COSEC caps the

Algorithm 1: Session Generation Algorithm

Input: Pages: List of search request pages;
Input: T : Threshold to slice page sequence into different

sessions;
Output: Sessions: Sessions Generated From Raw Traffic Logs;

1 Function GetSessionsFromPages(Pages, T):
2 Sessions = φ;

// Sort and group pages by uid
3 Pages = Pages.sort(P → P.uid);
4 PagesByUID = Pages.groupBy(P → P.uid);
5 for Pagesuid ∈ PagesByUID do

// Sort user’s pages by timestamp
6 Pagesuid = Pagesuid.sort(P → P.t);

// Process each user’s page sequence
7 S = φ;
8 Ptmp = Null;
9 for P ∈ Pagesuid do

// Get ad-click features.
10 AggregateAdClickFeatures(P);

// Slice the session when the time
interval is larger than T

11 if Ptmp �= Null && P.t− Ptmp.t > T then
12 Sessions.add(S);
13 S.empty();

// Get time interval between
queries for each P

14 P.tint = P.t− Ptmp;
15 end
16 Ptmp = P ;
17 S.add(Ptmp);
18 end
19 end

// Return the generated sessions
20 return Sessions;
21 end
22 Function AggregateAdClickFeatures(P):

// Process each click request in P
23 for c ∈ P.{AC} do

// Sum up revenue and count clicks.
24 P.r+ = c.r;
25 P.cnum+ = 1;
26 end
27 end

session length at a maximum of 50 search requests. This
cap is sufficient for COSEC to accurately measure the
incoherence index, as illustrated in §5.3.

3.2. Multidimensional Semantic Feature Encoder

With the generated search sessions, the next step for
COSEC is to extract and encode raw multidimensional
features into numerical representations that can be
interpreted by the deep model. To ensure the general

97

applicability of COSEC, we focus only on features that are
accessible to most search engines and less susceptible to
manipulation by fraudsters. Specifically, as shown
in Figure 4, COSEC leverages three groups of features from
search sessions: (1) literal semantic features extracted from
consecutive search queries (q), (2) the temporal features
extracted from the consecutive requests’ timestamps (t), and
(3) the ad-click behavioral features gathered from ad-click
requests, partially generated with Algorithm 1. These
features capture user or bot interactions with the search
engine and ad clicks. Although fraudsters may manipulate
keywords, request timings, and selective ad-click logic, the
data observed by search engines still reflects distinctive bot
behavior. In contrast, features such as the IP address or user
agent are easily and heavily manipulated by fraudsters,
causing a disconnect between the data received by search
engines and the actual bot activity. Consequently, COSEC
does not consider these features.

A fundamental challenge for COSEC is extracting
meaningful insights from the limited features accessible to
search engines. As noted in §2.2, session-aggregated
features (e.g., session length, request frequency) are too
course-grained, lacking the granularity needed for COSEC
to access session incoherence accurately. To address this
challenge, COSEC extracts three types of features from
each individual request and concatenates these feature
vectors into a sequence as input. This approach enables
COSEC to capture session-level information by internally
aggregating the request-level feature values with the deep
model while also leveraging insights from incoherent
requests within the session to produce the final results.

3.2.1. Literal Semantic Feature Encoding. To convert the
search keywords into numerical form and reduce
dimensionality, COSEC embeds each entire search query
into a fixed-length numerical representation independent of
the query’s length. Building on the concept of
Sentence-BERT [24], COSEC employs a SOTA
transformer-based algorithm for query encoding tasks.
COSEC segments the search query q into individual words
wi by splitting at spaces and generates a numerical token
for each word using the Literal Semantic Tokenizer
(σliteral). Next, COSEC applies average pooling to

compute the final literal features �F l from a query with
count of m words as:

�F l =
1

m

m∑

i=1

σliteral(wi)

Notably, this technique also enables our preliminary
investigation of search queries in §2.2. For a given query
pair, q1 and q2, the query similarity is calculated using the
CS of the encoded feature vectors, represented as:

similarity =
F l
q1 · F l

q2

|F l
q1 | × |F l

q2 |

The session-level average query similarity is the average of
each consecutive query pair, calculated as:

session query similarity =
1

n− 1

n−1∑

i=1

F l
qi · F l

qi+1

|F l
qi | × |F l

qi+1
|

where qi is the ith search query from a session with length
n. This session-level average CS score reflects the semantic
similarity between consecutive queries. As shown in Table 1,
the organic session examples have scores of 0.687 and 0.596,
respectively. The incoherent session example 1, which uses
randomized queries, has a score of 0.089.

3.2.2. Temporal Feature Encoding. COSEC extracts
numerical representations from the timestamps t of the
search requests within a session. Initially, COSEC captures
direct temporal information from each timestamp through
ad-hoc temporal feature encoding. Specifically, for each
search request, COSEC extracts the hour, minute, and
second as initial features. Next, COSEC applies both
normalization and cyclical encoding to each feature. For
example, the hour value h is normalized to the range [0, 1]
as h/24 and then encoded into a cyclical representation as
cos(2πh/24), sin(2πh/24). This cyclical encoding allows
the model to capture continuity across natural day
transitions, where the hour value shifts from 23 to 0.

We use �t to represent the numerical vector from the
concatenation of both direct and cyclical encoding values. In
addition to the direct values extracted from the timestamp,
COSEC also measures the time interval, as detailed in §3.1.
The time interval, denoted as Δt in Table 2, is calculated
in seconds and normalized by dividing it by 3,600, which
is the timeout threshold for session slicing. Finally, COSEC
concatenates all these numerical values and then applies a

single-layer autoencoder to derive temporal features �F t as:

�F t = σtemporal(concat(�t,Δt))

3.2.3. Ad-click Behavioral Feature Encoding. In addition
to the literal and temporal information provided by query
keywords and timestamps, COSEC also captures features
that represent ad-click behaviors in both organic and
fraudulent sessions. This process encodes knowledge of
ad-click characteristics within their associated search
requests. COSEC gathers the number of ads displayed on
the search result page (a), the count of ad clicks (c), the
revenue derived from ad clicks (r), and the current page
number of the search results (pn). Notably, the page
number (pn) reflects user behavior patterns when navigating
through multiple search result pages, indicating a more
persistent search behavior when initial results do not meet
their expectations. This feature helps COSEC distinguish
between typical browsing behavior and potential bot activity.
We refer to this step as ad-hoc ad-click behavioral feature
encoding. Next, COSEC applies an autoencoder, similar to
the one used for temporal features, to the concatenated

98

vector of ad-click features. The final ad-click behavioral
feature, �F b, is represented as:

�F b = σbehavioral(concat(a, c, r, pn))

3.3. Incoherence Index Evaluator

Next, as illustrated in Figure 4, COSEC’s Incoherence
Index Evaluator assesses the coherence of feature vectors
extracted from consecutive search requests within a session.
This task has two technical challenges: (1) the model must
accommodate sessions of varying lengths, and (2) the model
should introduce minimal computational overhead while
ensuring robustness in measuring the incoherence index.

COSEC employs a Bi-LSTM [27] as the backbone
sequential model to process the extracted features and
compute the incoherence index. This model enables
COSEC to handle feature vector sequences of arbitrary
length, deriving a bidirectional, session-level intermediate
representation. Although transformer-based models can
process sequential data, we opt for a Bi-LSTM model as a
proof of concept due to the relatively short sequence
lengths in search sessions (i.e., mostly under 50, as shown
in Figure 2), the limited size of the training dataset, and
computational constraints. Specifically, for a given search
session S with n search requests, COSEC uses semantic
feature extraction techniques to generate an initial input

feature sequence, represented as �V = {X1, X2, ..., Xn},

where each Xi = concat(�F l
i ,

�F t
i ,
�F b
i) represents the

concatenation of the multidimensional features of the ith

search request Pi in a search session S. Following the
state-of-the-art precedent [23], we prepend and append start

and end tokens to �V as X[STR] and X[END]. Both tokens
are generated as constant, randomly initialized, normally
distributed vectors. For simplicity, despite the internal
complexity of Bi-LSTM models, we denote the Bi-LSTM
processing function as σlstm.

During both training and prediction, the Bi-LSTM
model processes sequences in the forward and backward
directions. For a given sequence in the forward direction,
the input to the Bi-LSTM model includes two vectors: (1)
the feature vector from a search request (Xi) and (2) a
hidden vector representing the accumulated state from
previous inputs (Xf−lstmi− 1), where f − lstm denotes
Bi-LSTM in the forward direction. For each input feature
vector, the Bi-LSTM model predicts the updated hidden
vector (Xf−lstmi) as:

Xf−lstm
i = σlstm(Xi, X

f−lstm
i−1)

In the backward prediction, the Bi-LSTM starts from the
end of the sequence, and the hidden vector at each node’s
output Xb−lstm

i is derived as:

Xb−lstm
i = σlstm(Xi, X

b−lstm
i+1)

In both directions, COSEC initializes the hidden vector as a
zero vector. To obtain the final output, COSEC concatenates
the backward hidden vector of the [STR] token and the

forward hidden vector of the [END] token. A multilayer
perceptron (MLP) then processes this concatenated output
to produce the final prediction, pred, represented as:

pred = σmlp(concat(X
b−lstm
[STR] , Xf−lstm

[END]))

where σmlp represents the MLP, converting the bidirectional
LSTM model’s output vector into a scalar value ranging from
0 to 1. We refer to this output as the session’s incoherence
index.

Training Objective Task. Since no existing dataset
provides ground-truth labels for incoherence measurement,
we derive incoherence labels based on the inherent
differences between organic and fraudulent sessions. To
achieve this, we collect datasets containing both fraudulent
and organic sessions, with our label derivation rules
detailed in §4.1 Given that most fraudulent sessions are
likely to be incoherent while organic sessions tend to be
coherent, we simplify this task into a binary classification
model trained to distinguish between fraudulent sessions
(labeled as 1) and organic sessions (labeled as 0). COSEC
employs binary cross-entropy as the loss function L. For N
sessions in a training batch, the loss is represented as:

L = − 1

N

N∑

i=1

(yi × log(predi) + (1− yi)× log(1− predi))

4. Ground-Truth Dataset Collection

We built our training dataset and evaluation benchmark
from real-world search traffic. Dataset collection presents
significant challenges in this research area, as no approach
can definitively confirm whether a request originates from
click fraud without input from the fraudsters. Existing
studies [9], [12] rely on either collaborator-provided labels
or labeling algorithms, making the dataset quality
dependent on the existing fraud detector’s accuracy. To
minimize such bias, we develop three solid rules, as
introduced in §4.1 to sample organic and fraudulent traffic
from real-world data and to evaluate COSEC’s performance.
Our evaluation starts with unlabeled traffic provided by our
collaborator. To optimize our understanding and validation
of COSEC’s performance, we focus on English-language
sessions as a proof of concept, using [28] for language
selection. The extension of COSEC to sessions in other
languages is discussed in §7.3.

Our datasets were created by filtering sessions from
traffic in February and March and applying the three rules,
resulting in a separate dataset for each rule (i.e., Rules
R1-R3 in §4.1). We further validated the quality of these
datasets in §4.2. The datasets derived from February and
March are used for performance and drift evaluations,
respectively, in §5. Notably, we ensure that the information
used in dataset collection rules, such as user agent or
publisher information, remains orthogonal to the features
leveraged by COSEC. This prevents sampling bias or label
leakage into COSEC. We further discuss potential
limitations of our dataset collection procedures in §7.

99

TABLE 3: DATASET LABELING VALIDATION RESULTS.

Rule Label Dataset
Size

Sampled
Sessions #TP #FP Noise

Ratio

R1-Dataset 0 200,000 500 484 16 3.20%
R2-Dataset 1 100,000 500 500 0 0.00%
R3-Dataset 1 100,000 500 486 14 2.60%

Total - 400,000 1,500 1,470 30 2.00%

Additionally, we collected unlabeled traffic since April 2024
to evaluate COSEC under real-world conditions, as
demonstrated in the case studies presented in §6.

4.1. Ground-Truth Label Collection Rules

Organic Traffic Collection (R1). We collect our organic
traffic dataset from search and ad-click requests on search
engine-owned websites that fraudsters cannot profit from,
making fraudulent activity unlikely. A recent study [29]
also suggests that traffic from outdated browser versions is
typically bot-generated, while organic users generally use
auto-updated, latest versions. As a result, our collection
process is as follows: (1) we gather traffic from search
engine websites; (2) we generate sessions, filtering out those
with inconsistent user agents or outdated browsers; and (3)
we exclude sessions linked to known fraud campaigns based
on collaborator-provided deny lists. This approach yields
a representative set of organic traffic requests, capturing
diverse user sessions across different countries, cultures, and
demographics.

Sessions With Inconsistency Behaviors (R2). Search
engines can identify fraudulent traffic by leveraging
session-level inconsistencies as ground truth. In organic
sessions, details like OS type, browser version, and browser
name remain consistent throughout. In contrast, sessions
with inconsistencies in these fields are likely due to request
header manipulation or automated scripting [12]. We collect
sessions with inconsistent user agents as indicators of
fraudulent traffic, allowing search engines to detect
suspicious activity that attempts to evade detection through
request manipulation. This rule is designed to capture a
high-precision fraudulent dataset, encompassing general
fraudulent traffic from small to medium-scale fraudsters.

Sessions From Suspicious Channels (R3). Drawing on
insights from [5], we identify fraudulent traffic from certain
publishers by grouping search sessions by publisher ID and
calculating the six statistical metrics outlined in §2.2. We
compare these metrics with organic traffic (R1) and flag
publishers whose metrics deviate most from the norm on a
daily basis. Flagged publishers are sorted by traffic volume,
and sessions from the top five are included in the fraudulent
traffic dataset. Notably, such fraudsters are equipped with
resources to actively adopt evasion techniques, allowing their
traffic to bypass the dataset collection approach presented in
R2. This approach effectively collects fraudulent traffic from
sophisticated fraudsters while minimizing false positives, as
validated in §4.2.

4.2. Label Correctness Validation

We prepared the datasets for training and performance
evaluation by applying Rules R1–R3 to raw search traffic.
From each dataset, we randomly sampled 500 sessions and
manually verified their accuracy. Ground-truth labels were
provided by experienced fraud investigators, authorized by
our collaborator, who reviewed the samples without
knowledge of the specific rule applied to each session. In
the absence of direct data from fraudsters, this labeling
method offers the most reliable ground truth and meets both
academic and industry standards.

Table 3 presents the validation results: Columns 1 and 2
list the dataset collection rules and assigned labels. Column
3 shows dataset sizes, Column 4 indicates the number of
sessions sampled for validation. Columns 5 and 6 display
true positives (TP) and false positives (FP), and Column 7
shows the datasets’ noise ratio.

As shown in Row 1 in Table 3, Rule R1 collected
200,000 sessions from organic users. Among 500 sampled
sessions for manual validation, we identified 16 (3.2%)
noisy sessions. These false positives, flagged as fraudulent
by investigators, exhibited patterns similar to known
fraudulent campaigns, characterized by nonsensical and
repetitive queries that generated high ad-click volumes. In
Row 2 in Table 3, none of the 500 sampled sessions filtered
by R2 were classified as organic. These sessions
demonstrated varied fraudulent behaviors. For example, in
addition to the patterns shown in Table 1, fraudsters
generated traffic with repeated keywords with random ad
clicks. In other cases, fraudsters used the "site:" operator to
retrieve results from a specific domain, appending random
movie titles to each query. We also observed cases where
fraudsters segmented articles into sentences for sequential
searches, creating sessions with high average CS. Row 3
reports 14 noisy sessions (2.6% noise ratio), likely
originating from organic users on the flagged publisher’s
website. Despite this noise, most sessions collected under
R2 and R3 remain incoherent, making them well-suited for
training and testing. In total, we manually verified 1,500
sampled sessions, identifying 30 noisy sessions. This results
in an overall noise ratio of 2.0%. The validation
demonstrates the robustness of our rules in capturing
representative sessions for training and evaluating COSEC.

5. Evaluation

5.1. Implementation & Evaluation Dataset Setup

We implemented COSEC’s prototypes in Python using
PyTorch [30]. For the literal semantic feature encoder, we
applied the method proposed in [24] with the MPNet
implementation [31] and pre-trained weights from [32]. We
used the AdamW optimizer [33] with a learning rate of
0.0001, β1 = 0.9, β2 = 0.999, and a weight decay of 0.01.
A step learning rate optimizer was employed with a step
size of 2 and a gamma of 0.8. Training was conducted on a
bare-metal machine with an 8-core CPU, 128GB of

100

memory, and a GPU with 16GB of memory. COSEC was
trained for 20 to 30 epochs, with early stopping to prevent
overfitting. §C details COSEC’s overhead measurement.

Evaluation Benchmark. We used the datasets filtered by
Rules R1-R3 from Feb. 1 to Feb. 14 for model training
and performance evaluation. As shown in §4.2, we collected
200,000 sessions from R1-filtered traffic. We split them into
a training dataset (140,000 sessions) and a testing dataset
(60,000 sessions) using a 7:3 train-test split ratio. Similarly,
we randomly sampled 100,000 sessions each from traffic
filtered by R2 and R3, dividing them into training and testing
sets at the same 7:3 ratio. In particular, the randomly sampled
datasets from rules R2 and R3 share less than 1% overlapped
sessions, and we remove them from the dataset sampled with
R3 to avoid repeatedly using these sessions. For concept
drift measurement in §5.5, we sampled traffic filtered by
R1–R3 over four weeks in March, randomly selecting 40,000
sessions each week—20,000 from R1, 10,000 from R2, and
10,000 from R3. This evaluation dataset maintains the same
distribution ratios regardless of the size used in §5.

5.2. COSEC Performance and Noise Validation

We trained COSEC’s incoherence index evaluator with
the training datasets and evaluated it with the testing datasets.
As shown in Table 4, COSEC achieves an overall accuracy
of 94.17%, with a precision of 95.79%, recall of 92.40%,
and F1-score of 0.9407. Specifically, COSEC flags 28,047
fraudulent sessions out of 30,000 sessions filtered by R2,
yielding an accuracy of 93.49%, and successfully identifies
91.31% fraudulent sessions labeled by R3. Among 60,000
organic sessions, COSEC produces only 2,684 false positives,
resulting in an accuracy of 95.53%. COSEC achieves an AUC
of 0.9829 for the Receiver Operating Characteristic (ROC)
curve and an AUC of 0.9853 for the Precision-Recall curve,
highlighting its robustness in identifying the majority of
fraudulent traffic with minimal false positives.

Given the challenge of manually labeling the whole test
dataset, we look into false-positive (FP) and false-negative
(FN) sessions reported by COSEC for each dataset to
evaluate its performance on noisy data. For manual
validation, we sampled 500 FP sessions from the R1 dataset
and 500 FN sessions each from the R2 and R3 datasets. We
conducted the same manual validation procedures detailed

TABLE 4: COSEC’s PERFORMANCE METRICS.

Rules∗ # Session #TP† #TN† #FP† #FN† Accuracy

R1-Dataset 60,000 0 57,316 2,684 0 95.53%
R2-Dataset 30,000 28,047 0 0 1,953 93.49%
R3-Dataset 30,000 27,393 0 0 2,607 91.31%

Total 120,000 55,440 57,316 2,684 3,560 94.17%

Precision: 95.79% Recall: 92.40% F1-Score: 0.9407
AOCROC : 0.9829 AOCPrecision−Recall: 0.9853

*: Rules represent the datasets being collected with.
TP: Fraudulent sessions correctly flagged by COSEC.
TN: Organic sessions correctly not flagged by COSEC.
FP: Organic sessions wrongly flagged by COSEC.
TP: Fraudulent sessions wrongly not flagged by COSEC.

in §4.2. The validation results are presented in Table 5 to
conclude COSEC’s performance on the noisy data in each
dataset. Columns 1 and 2 list the datasets’ names and sizes.
Column 3 shows the noise ratio derived in previous labeling
validation in §4.2. Column 4 presents the count of FP or
FN sessions reported by COSEC on the testing dataset, and
Column 5 shows the COSEC’s accuracy against each
dataset. Columns 6-8 represent the manual validation results
on 500 sampled sessions. Column 6 shows the number of
sessions considered noisy and on which sessions COSEC
performs correctly. Column 7 shows the number of sessions
being correctly labeled and COSEC-made mistakes.
Column 8 is the ratio of noisy sessions in the sampled 500
sessions. We further present the estimated COSEC
performance on all noisy sessions in each dataset in
Columns 9-12. We estimate the total noisy sessions in
Column 9 by multiplying the Dataset Noise Ratio (Column
2) with the size (Column 3). Column 10 estimates the total
noisy sessions flagged by COSEC in each test dataset by
multiplying the noise ratio in FP/FN sessions (Column 8)
by the count in Column 4. Column 11 estimates the missed
noisy sessions, and Column 12 reports the percentage of
noisy sessions being identified by COSEC over total
estimated noisy session counts.

With a noise ratio of 3.2% in the R1 Dataset, we
estimate there are approximately 1,920 noisy sessions.
Additionally, as shown in Table 5, 318 out of 500 (63.6%)
reported false-positive (FP) sessions were identified as
noise, suggesting that an estimated 1,707 noisy sessions out
of 2,684 FPs are actually fraudulent but pass the filtering
rule R1. Despite potential deviations in these estimates, they
underscore COSEC’s ability to flag around 88.91% of
fraudulent sessions in the R1 Dataset, capturing fraudulent
sessions missed by the rule-based approach. This result
overall remains consistent with COSEC’s performance on
fraudulent traffic flagged by Rules R2 and R3. Notably, as
elaborated in §4.1, these noisy sessions originate directly
from client devices to search engine-owned publisher sites,
generating no direct profit for fraudsters through an
untrusted search interface (as depicted in Figure 1).
Techniques that rely on flagging unethical publishers would
typically overlook such sessions. However, these sessions
still benefit fraudsters, as they may aim to "poison" organic
traffic from trusted publishers, reducing the statistical
feature gap between organic and fraudulent traffic.
Fortunately, COSEC can still flag 88.91% of these sessions
as fraudulent at a fine-grained level, demonstrating its
ability to detect previously unknown fraudulent activity
without training on campaign-specific traffic.

The R2 dataset contains no noise, as it only includes
sessions with forged and inconsistent user agents. Applying
a similar analysis to the R3 dataset, we manually identified
129 noisy sessions out of 500 sampled sessions, which were
subsequently considered organic. This translates to an
estimated 780 noisy sessions in the R3 dataset, with
COSEC successfully flagging approximately 673 of them,
resulting in an 86.28% identification rate for noisy sessions.
Although COSEC’s performance on noisy sessions is

101

TABLE 5: MANUAL VALIDATION ON COSEC’S PERFORMANCE AGAINST NOISE.

Dataset Size Dataset Noise CoSeC Results Manual Val. in Samplied FP/FN Est. COSEC’s Performance on Noise

Ratio(%)1 #FP/FN2 Accu. #Noise3 #Err3 %Noise3 #Total1 #Flg.4 #Mis.4 %Noise Flg.5

R1 60,000 3.20% 2,684 95.53% 318 182 63.6% 1,920 1,707 213 88.91%
R2 30,000 0.00% 1,953 93.49% 0 500 0.0% 0 0 0 N/A
R3 30,000 2.60% 2,607 91.31% 129 371 25.8% 780 673 107 86.28%

Total 120,000 2.25% 7,244 94.17% 447 1,053 29.80% 2,700 2,380 320 88.15%

1: Noise ratios are from labeling validation (§4.2). #Total estimates count noisy sessions by multiplying the noise ratio with dataset sizes.
2: Count of COSEC-reported false-positive sessions in R1 dataset and false-negative sessions in R2 and R3 datasets regardless of noise.
3: The manual validation results from 500 sessions sampled from FP/FN results in each dataset. #Noise shows noisy sessions counts and #Err

shows counts of sessions are actual wrongly labeled by COSEC. %Noise shows the ratio of noisy sessions in sampled FP/FN sessions.
4: Estimated counting of noisy sessions’ successfully flagged by COSEC. #Flg. values are estimated by #FP/FN of COSEC Results (Column 4)

multiplies %Noise of FP/FN sessions (Column 8). Results are rounded to integers.
5: Percentage of estimated noisy sessions in each dataset being successfully flagged by COSEC.

evaluated to the best of our knowledge, these results
demonstrate COSEC’s robustness, with an overall success
rate of 88.15% in correctly identifying noise.

5.3. Feature-Relevant Evaluation

We evaluated COSEC’s performance by selectively
masking features during training and testing to assess the
impact of different input features. We categorized the
features into three groups, as defined in §3.2. Additionally,
we assessed overall accuracy by training the prototype on
datasets ranging from 4,000 to 400,000 sessions, covering
1% to 100% of the evaluation datasets. As in §5.2, the
prototype was trained on 70% of each dataset and tested on
the remaining 30% at each dataset scale. Figure 5 shows
the accuracy results based on individual or combined
feature groups, resulting in seven curves.

In general, COSEC achieves optimal performance with
94.17% accuracy when all feature groups are utilized. As
shown when the dataset has 400,000 sessions, COSEC
achieves 91.81% accuracy using only literal features,
92.96% when combining literal and temporal features, and
92.61% when combining literal and behavioral features.
These results demonstrate the robustness of literal features
in identifying fraudulent traffic. In contrast, COSEC trained
with temporal features achieves an accuracy of 86.72%,
while using only ad-click behavioral features results in a
maximum accuracy of 71.72%. Even combining both
temporal and ad-click behavioral features, the accuracy can
only achieve 88.11%, which is 6.06% lower than that
including additional literal features, highlighting the
limitations of these feature types for click fraud detection.
However, as shown by the solid line curve in Figure 5,
combining all three feature groups consistently delivers the
best performance in all dataset sizes evaluated.

In terms of dataset sizes, the curves in Figure 5 show
that COSEC achieves better performance with larger
training datasets. Additionally, the results reveal that
temporal features capture a clearer distinction between
organic and fraudulent sessions when trained on smaller
datasets (i.e., total dataset size below 100,000 sessions). In
contrast, COSEC ’s prototypes utilizing literal features
require more data to detect this gap effectively. For

Figure 5: COSEC’s Accuracy by Different Features Selected
and on Different Dataset Sizes. Sizes are the total dataset
size, split into train/test sets at 7:3.

Figure 6: Precisions And Recalls by Session Lengths.

example, models trained with only literal features achieve
accuracy of 85.91% with 100,000 sessions and 79.52% with
40,000 sessions, showing a gain of 6.39%. However, the
prototype using only temporal features shows a smaller
gain, improving from 82.41% to 84.09%, with an increase
of just 1.68%. Given that search engines can access
large-scale real-world data, we expect literal features to
play an increasingly significant role in detecting click fraud
in search ads.

Performance vs. Session Lengths. We further evaluated
COSEC’s performance across varying session lengths.

102

TABLE 6: COMPARISON BETWEEN COSEC AND
STATISTICAL FEATURES-BASED MODELS.

Model Accuracy Precision Recall F1 AUCROC

SO-DNN 80.54% 88.46% 70.25% 0.7831 0.8745
SO-LR 71.42% 75.33% 63.71% 0.6903 0.7665
SO-RF 86.22% 90.95% 80.45% 0.8538 0.9247

S-DNN 80.61% 86.59% 72.44% 0.7888 0.8778
S-LR 77.40% 80.24% 72.71% 0.7629 0.8442
S-RF 90.35% 94.89% 85.29% 0.8983 0.9551

CoSeC 94.17% 95.79% 92.40% 0.9406 0.9855
SO-: models use all but no query similarity-related features.
S-: models use all statistical features.
LR: Logistic regression baseline model.
DNN: Deep neural network baseline model.
RF: Random forest baseline model.

Figure 6 presents COSEC ’s precision and recall breakdown
by session length. Generally, both precision and recall
improve with longer sessions, indicating COSEC’s
enhanced capability to detect incoherent behaviors in
extended sessions. Specifically, for sessions with 10
requests or fewer, the prototype achieves an average
precision of 93.53% and recall of 89.87%. For sessions
longer than 20 requests, COSEC reaches an average
precision of 99.63% and recall of 99.89%, reflecting
improvements of 6.10% and 10.02%, respectively. This
supports our initial assumption that session-level coherent
context contributes to more accurate detection of fraudulent
traffic.

5.4. COSEC Versus Statistical Feature Models

Experiment Setup. To effectively evaluate the
performance of COSEC, we compared it with models
leveraging two statistical feature setups. Guided by [4], we
extracted 18 statistical features from the same raw session
data used by COSEC. The collection of these features is
detailed in §B. Notably, while previous studies consider
session-level information, none have utilized insights from
query content or query similarities. We added nine
additional features, shown in the last three rows of §B,
resulting in a total of 27 features. We prepared two feature
sets, as shown in Column 1 of Table 6: models with the S-
prefix use all statistical features, while SO- models exclude
nine query-based features, representing the standard
statistical features available to search engines in studies
summarized by [4]. We implemented deep neural networks
(i.e., DNN models) with three fully connected layers,
logistic regression (i.e., LR models), and Random Forest
(i.e., RF models) as our baselines. All of these models
produce an output representing an incoherence index in the
range [0, 1]. We apply a threshold of 0.5, classifying
sessions with predicted incoherence indexes above it as
fraudulent.

Performance. Each row in Table 6 presents the accuracy,
precision, recall, F1-score, and area-under-curve (AUC)
values for Receiver Operating Characteristic (ROC) curves.
Additionally, Figure 7 presents all models’ ROC and

Figure 7: Receiver Operating Characteristic (ROC) Curve
and Precision-Recall Curve for COSEC and Models Using
Statistical Features in Table 6.

TABLE 7: CONCEPT DRIFT MEASUREMENT RESULTS.

Dataset
Period Accuracy Precision Recall F1-Score AUC

Week 1 90.48% 94.37% 87.11% 0.9060 0.9685
Week 2 93.45% 93.08% 94.00% 0.9354 0.9789
Week 3 92.57% 94.23% 90.84% 0.9250 0.9786
Week 4 92.95% 94.08% 91.68% 0.9286 0.9740

Total 92.34% 93.94% 90.82% 0.9235 0.9750

Precision-Recall curves. Overall, COSEC achieves the best
performance, with a 94.17% accuracy, 95.79% precision,
and 92.40% recall. This also leads to the best ROC and
Precision-Recall curves with the maximum AUCROC of
0.9829. In terms of models running a similar computing
overhead using all statistical features (i.e., S-DNN, S-LR,
and S-RF), Random Forest achieves the best follow-up
performance with 90.35% accuracy. This aligns with a
previous study [34] highlighting that tree-based models are
still superior in tabular data classification tasks. However,
since COSEC can more effectively leverage knowledge
from the search requests, it still outperforms the S-RF
model with gains of 3.82% in accuracy and 0.0304 in
AUCROC . Additionally, by comparing models with and
without query-similarity features, S-RF, S-DNN, and S-LR
outperform SO-RF, SO-DNN, and SO-LR models with
4.32%, 5.98%, and 0.07% in accuracy, respectively. This
finding sheds light on using query literal-semantic features
to improve existing click fraud detection algorithms.

5.5. Concept Drift Measurement

To evaluate the reliability and robustness of COSEC,
we tested the prototype on datasets collected over four
weeks, from March 1 to March 28. Since COSEC was
trained solely on February data, it had no prior knowledge
of the March sessions. In Table 7, we present both
session-level and individual search request-level evaluations
for datasets collected each week in March. For each
sub-dataset, we randomly sampled 40,000 sessions,
comprising 20,000 organic and 20,000 fraudulent sessions,
following the test dataset approach detailed in §5.1. Each
row in Table 7 represents test results for a sub-dataset, with
Column 1 indicating the dataset collection period. Columns
2–5 show accuracy, precision, recall, and F1-score,

103

respectively, while Column 10 shows the AUC value under
the ROC curve for each dataset.

Comparing session-level evaluation results with those
from the February dataset, the accuracy remains stable,
averaging 92.34%. Precision, which measures the
proportion of true positives among all positive detections,
averages 93.94% ± 0.86%. The result remains close to the
precision achieved in the initial performance evaluation.
However, recall, tested across different datasets, shows
more fluctuation, with an average of 90.82% ± 3.71%.
Upon investigation, we attribute the stable precision to the
relatively consistent search habits of organic users, which
results in a low false-positive rate when COSEC infers this
traffic. In contrast, recall variability is likely caused by
fraudsters’ evolving evasion strategies. As search engines
continually deploy new detection algorithms, fraudsters
adapt their traffic generation tactics to bypass existing
systems, leading to changes in fraudulent traffic patterns
over time, which can impact the performance of COSEC.

Nevertheless, even as fraudsters adopt new evasion
approaches, COSEC is able to flag 90.82% of fraudulent
traffic with high precision (93.94%). Given COSEC’s
reasonable overhead (as shown in §C), search engines can
deploy COSEC’s methodology and dataset collection
procedures to fine-tune the model continuously with newly
identified fraudulent sessions.

6. Real-World Detection Case Studies

6.1. Case Study 1: Evolving Evasion Techniques

During our deploying COSEC to real-world unlabeled
traffic, we observed that a large group of identical search
sessions flagged by COSEC likely originated from the same
campaign, which evolved its evasion strategies over time.
Specifically, we noted that the campaign attempted to mimic
mobile device traffic by manipulating user agents. Tracing
back to February, these sessions fell within our detection
scope because they featured multiple different mobile user
agents within a single session. However, once flagged and
invalidated, the attackers adjusted their approach by
maintaining a consistent mobile user agent throughout each
session, effectively circumventing the previous detection
rule. During the seven days from April 1 to April 7,
COSEC identified 299,727 unique user agents within these
sessions, reinforcing our initial assumption that fraudsters
continually adapt their strategies to evade detection.

In terms of monetization and evasion, we observed that
the campaign used 18 different publisher IDs, with each
session containing requests from an average of 4.62 unique
publisher IDs. These sessions were primarily redirected from
nine different referrers, with each session originating from
an average of 3.01 unique referrers. This strongly suggests
that these sessions are manipulated by scripts, indicating
a highly suspicious monetization channel through certain
publishers involved in this fraud campaign. Regarding search
queries, the fraud campaign employed a randomized keyword

TABLE 8: SESSIONS WITH "SIMILAR" QUERIES.

Queries Interval1 #Ads2 #Clicks2 Cos. Sim.3

downhole logging tools - 0 0 -
downhole tool companies 123 0 0 0.644
downhole tools pdf 147 4 1 0.605
downhole tools manufacturers 43 0 0 0.740
downhole drilling tools 60 6 0 0.622
downhole tools 81 3 0 0.848
downhole completion tools 58 3 1 0.829

The example sessions were fabricated to protect users’ identity.
1: The time interval between this request to the previous one in seconds.
2: Count of ads returned in search results and count of ads clicks.
3: Cosine similarity between this query to query of the previous request.

Figure 8: Cosine Similarity Distribution From COSEC
Flagged Sessions to Single Website in §6.2. As the fraudsters
manipulate the queries, the query cosine similarities are
similar to those from organic users’ search sessions.

selection strategy, resulting in sessions similar to incoherent
session example 1 shown in our preliminary study in Table 1.
This pattern allows COSEC to easily flag these sessions with
a high incoherence index.

In a post-analysis, we collected all sessions generated
by the campaign over a seven-day period. The campaign
produced approximately 111,000 fraudulent sessions with
clicks each day. Comparing these post-analysis findings
with COSEC’s flagging results, we found that COSEC
successfully identified 87.65% of the search sessions within
the collected traffic, underscoring its capability to detect
fraudulent sessions even as fraudsters adapt their strategies.
For flagged sessions, search engines can mitigate such
attacks by canceling payments to the identified fraudulent
traffic and discontinuing ad displays to these sessions.

6.2. Case Study 2: Search Query Manipulation

Not only are we investigating the manipulation of
search query keywords to mimic organic user behavior, but
fraudsters are also actively exploring this tactic. Between
Nov. 1 and 10, COSEC flagged 6,348 sessions generated on
a third-party publisher’s website, accounting for 8.89% of
all search traffic to the site. After further investigation, our
collaborator confirmed that these sessions were indeed
fraudulent. Interestingly, we observed a clear trend in these
flagged sessions toward using queries that mimic human
thought processes. For example, in a fabricated search
session shown in Table 8, besides the repeated keyword
"downhole," other words are used to modify the query.
These variations not only yield different search results but
also create high similarity among queries, resulting in an
average CS of 0.715. Additionally,Figure 8 shows the CS
distribution for queries in these flagged sessions, closely

104

resembling that of organic search sessions in the top
histogram of Figure 3.

Our investigation found that fraudsters may be using
suggested search queries to build their lists. Specifically, as
shown in Figure 9, modern search engines prompt users
with potential queries as they type, a feature intended to aid
organic users. Fraudsters appear to leverage this feature to
create query lists that better mimic organic behavior.
Fortunately, even as fraudsters adopt these new evasion
techniques, COSEC can still effectively flag these
fraudulent sessions at scale.

7. Discussion

COSEC’s core objective is to mitigate click fraud in
search engines. As outlined in §3, COSEC uses general
features like request timestamps, search keywords, and
ad-click behaviors, which are commonly available across
search engines. Search engines can also easily group
requests by unique users, enabling efficient session
construction from traffic. COSEC is designed to flag
fraudulent traffic retrospectively, enabling search engines to
refund advertisers after identifying fraudulent traffic.
Additionally, search engines may enhance fraud detection
by combining COSEC’s output with other features.

7.1. Adversarial Attackers

Ad-click fraudsters continuously adapt their strategies to
evade detection. However, since COSEC measures session
incoherence based on literal, temporal, and ad-click
behavioral features, it remains resilient to common traffic
manipulation techniques. Even if advanced fraudsters
attempt to create more coherent sessions with high query
similarity, as shown in §6.2, COSEC still establishes a clear
decision boundary, filtering out most fraudulent traffic.
While adversaries might train a similar model for evasion,
generating realistic search sessions that maximize illegal
profit remains significantly more challenging. Since COSEC
leverages multidimensional patterns that remain consistent
across sessions, attackers must carefully manipulate
semantics, timing, and ad-click behavior rather than merely
crafting keyword-based queries (as demonstrated in §6.2).
Besides, slowing the rate of fraudulent traffic to evade
COSEC would significantly reduce fraudsters’ profits,
rendering click fraud economically unsustainable due to the
costs of hiring botnets or click farms.

Although it is still possible, this task becomes more
complicated when fraudsters target high-value search
queries for higher profit. However, adaptive adversaries,
who may abuse state-of-the-art black-box or white-box
access to COSEC’s model to reverse-engineer COSEC’s
detection criteria, will be an increasing challenge. Besides,
the fast-paced evolution of LLM-based generators may
enable fraudsters to develop a more comprehensive system
to simulate organic users’ personas and generate search and
ad-click traffic. Despite the increasing operational cost to
incorporate LLM-based generators and the technical

challenge of overcoming existing misuse detections [35],
we consider this a future research direction to improve
COSEC to defend such attacks.

7.2. Cookie Availability & Integrity

Fraudsters may attempt to manipulate cookies to disrupt
COSEC’s session generation. However, ensuring cookie
integrity is an orthogonal challenge managed by web
service providers. Techniques such as signing cookies with
a server-side key (e.g., DBSC [36]) make forging valid
cookie values technically difficult. Besides, while disabling
cookies could interfere with COSEC’s session generation,
such traffic is likely flagged by search engines and has
minimal impact on organic traffic revenue. Notably,
privacy-conscious users who disable cookies may
inadvertently blend their traffic with trivial fraudsters’
traffic. Nonetheless, search engines should flag such
ad-click traffic to prevent advertisers from being
overcharged, even at the cost of losing some revenue from
legitimate users. Additionally, industry-standard cookieless
tracking methods [37] offer viable alternatives for grouping
individual requests into session-level traffic, aligning with
our research.

7.3. Limitation

Dateset Coverage. We acknowledge that our dataset does
not encompass all search traffic and may introduce bias due
to the absence of an automated method for deriving ground
truth from blended data. Although we apply combined rules
to filter fraudulent traffic from various sources, these rules
may not span the entire domain of search behavior. As a
result, COSEC’s performance could be affected when
detecting fraudulent traffic across blended sources. This
challenge is not unique to our research but is a common
limitation in building and evaluating comprehensive
machine learning-based ad-click fraud detection systems.
However, this limitation underscores the necessity of our
research in advancing fraudulent traffic detection.
Furthermore, based on our proof-of-concept evaluation, we
believe COSEC’s accuracy could be further improved with
a more comprehensive and precise data source.

Technical Limitations. As a proof of concept, COSEC
has certain technical limitations. First, due to resource
constraints, we rely on pre-trained sentence embedding
models to encode search keywords, meaning the quality of
semantic features depends on these models’ performance.
Additionally, performance may vary across different
languages. Fine-tuning these models with search
engine-specific datasets is a potential future enhancement.
Another limitation is that parts of COSEC’s evaluation rely
on assessments from click fraud investigators, as neither we
nor our collaborators can definitively verify a request’s
legitimacy with the sender (i.e., fraudsters). Although our
results align with industry standards and best practices, a
margin of error remains.

105

8. Ethical Consideration

We have carefully considered the ethical implications of
this research and conducted it responsibly, ensuring no user
data was disclosed without explicit permission from our
collaborators. We recognize the potential risks associated
with re-identification and unethical model inversion attacks.
To mitigate these risks, we implemented strict safeguards,
including conducting all experiments on collaborator-owned
devices that are not accessible from the public internet.
Additionally, since COSEC’s output is used by our
collaborator to either charge or not charge for an ad click,
the only externally observable output is a binary decision
for each ad click. This makes it highly unlikely to
reconstruct the original user information from the output.
These measures ensure that our research aligns with best
privacy practices while safeguarding the integrity and
confidentiality of user data.

In this research, we define sensitive information as any
data that could be used to attribute behaviors to individuals,
including search queries, IP addresses, device details such
as user agent and OS type, and user IDs. Given the
dataset’s direct connection to search traffic between the
collaborator’s search engine and end users, all data access
was classified as sensitive and restricted to company-owned
and managed devices. Access to this data was limited to
employees of our collaborator who are bound by
Non-Disclosure Agreements and privacy-related
employment regulations. Other researchers on this project
did not have access to such sensitive data. To illustrate
concepts without compromising privacy, only fabricated
examples are used in Table 1 and Table 8.

9. Related Work

Server-side Click Fraud Detection. Several studies [7],
[8], [22], [38] have successfully identified fraudulent traffic
through machine learning algorithms based on traffic
fingerprint features. EvilHunter [12] identifies and clusters
fraudulent mobile devices, specifically click farms, based on
ad bid behavior features. However, this approach is limited
to traffic from manipulated bots, and attackers can evade
detection by altering device information. ViceROI [5] and
HK-Index [39] propose detecting fraudulent traffic through
aggregated knowledge but face limitations when
monetizable ad clicks are hidden within large volumes of
organic traffic or when search engines require more
granular fraud detection. Xu et al. [40] showed success in
identifying fraud by monitoring behavior on advertisers’
websites, though scalability remains challenging in practice.
Our work builds on these ideas to create a ground-truth
dataset for training and testing models. Unlike previous
studies, COSEC identifies fine-grained fraudulent traffic
sessions based on semantic and temporal patterns, which
are readily available to search engines.

Frontend Click Bot Remediation. In the realm of
front-end click-bot remediation, studies have shown

promising success in analyzing bot behavior and detecting
fraudulent activity. Recent works [14], [15], [19], [41]–[43]
can identify and remediate auto-click behaviors in mobile
malware. For example, Kim et al. [41] distinguished ad
clicks from user-generated and malicious sources by
analyzing method call stack traces, while ClickScanner [16]
utilized static features and Variational AutoEncoders to
classify fraudulent mobile apps. Paul et al. [19] examined
the ZeroAccess botnet’s ad-click fraud mechanisms, and
AdCube [44] highlighted risks and mitigations for ads
placed outside users’ view in VR devices. Additionally,
research in mobile malware forensics and malware binary
analysis—focused on evaluating behavioral patterns and
identifying malicious traffic [45]–[50]—offers valuable
insights into understanding and characterizing bot-generated
traffic. Orthogonal to these studies, which focus on
malicious bots, COSEC addresses click fraud in search ads
using generalizable features accessible to search engines,
emphasizing the remediation of fraudulent traffic rather than
bot behavior alone.

Anomaly Network Traffic Analysis. COSEC is inspired
by research addressing anomaly detection in network traffic.
State-of-the-art techniques [51]–[56] have made significant
progress in detecting fraud in banking and e-commerce
transactions. For example, Wang et al. and Branco et
al. [52], [53] leveraged consecutive user-behavior patterns
to identify fraud. Li et al. [10] detected script-generated
network sessions by fingerprinting HTTP headers. Unlike
these studies, COSEC tackles a fundamentally different task
by using fine-grained semantic knowledge to identify
fraudulent sessions We believe COSEC’s approach could
extend to other types of anomaly analysis. Additionally,
research by [57] highlights how understanding
bot-generated query intent and behavior is essential,
emphasizing the role of semantic knowledge from search
sessions in detecting fraud.

10. Conclusion

In this study, we introduced COSEC as the pioneering
work in measuring coherence from search sessions to infer
ad-click fraudulent activities. COSEC relies exclusively on
fundamental, invariant multidimensional features extracted
from consecutive search requests to assess incoherence and
profile user activity. As a proof-of-concept, we developed
COSEC’s prototype and trained its classifier using raw
real-world data, achieving 95.79% precision and 92.40%
recall in identifying incoherent search sessions. Our results
demonstrate COSEC’s promising performance in identifying
incoherence within fraudulent sessions. Through evaluation
of real-world datasets, we establish that this technique
remains robust in countering the ever-evolving cheating
strategies employed by fraud campaigns.

Acknowledgments

We thank the anonymous reviewers for their
constructive comments and feedback. We also thank our

106

collaborators at Microsoft for their support, insights, and
suggestions throughout this research. This material was
supported in part by the Office of Naval Research (ONR)
under grants N00014-19-1-2179 and N00014-23-1-2073; the
National Science Foundation (NSF) under grant 2143689;
and the Defense Advanced Research Projects Agency
(DARPA) under contract N66001-21-C-4024. Any opinions,
findings, and conclusions in this paper are those of the
authors and do not necessarily reflect the views of our
sponsors and collaborators.

References

[1] Search advertising - united states, https://www.statista.com/outlook/
dmo/digital-advertising/search-advertising/united-states, [Accessed:
2024-04-11].

[2] What is click fraud? | how click bots work, https://www.cloudflare.
com/learning/bots/what-is-click-fraud/, [Accessed: 2023-09-14].

[3] The ultimate list of click fraud statistics 2023, https://cheq.ai/blog/
click-fraud-statistics-2023, [Accessed: 2023-09-14].

[4] R. A. Alzahrani and M. S. Aljabri, “AI-based techniques for ad click
fraud detection and prevention: Review and research directions,” J.
Sens. Actuator Networks, vol. 12, no. 1, p. 4, Feb. 2023.

[5] V. Dave, S. Guha, and Y. Zhang, “ViceROI: Catching click-spam in
search ad networks,” in Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), Berlin, Germany,
Oct. 2013.

[6] V. Dave, S. Guha, and Y. Zhang, “Measuring and fingerprinting
click-spam in ad networks,” in Proceedings of the 2012 ACM
SIGCOMM, Helsinki, Finland, Aug. 2012.

[7] N. Sahllal and E. M. Souidi, “Forecasting click fraud via machine
learning algorithms,” in Proceedings of the 4th International
Conference on Codes, Cryptology and Information Security, Rabat,
Morocco, May 2023.

[8] P. K. Keserwani, V. Jha, M. C. Govil, and E. S. Pilli, “Clickedroid:
A methodology based on heuristic approach to detect mobile
ad-click frauds,” in Proceedings of the International Conference
on Paradigms of Computing, Communication and Data Sciences
(PCCDS), Kurukshetra, India, May 2020.

[9] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich,
“Web-scale bayesian click-through rate prediction for sponsored
search advertising in microsoft’s bing search engine,” in
Proceedings of the 27th International Conference on Machine
Learning (ICML), Haifa, Israel, Jun. 2010.

[10] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad
bot: Characterizing automated browsing activity,” in Proceedings
of the 42nd IEEE Symposium on Security and Privacy (S&P), San
Francisco, CA, May 2021.

[11] M. Kantardzic, C. Walgampaya, R. Yampolskiy, and R. J. Woo,
“Click fraud prevention via multimodal evidence fusion by
dempster-shafer theory,” in Proceedings of 2010 IEEE Conference
on Multisensor Fusion and Integration (MFI), 2010.

[12] S. Sun, L. Yu, X. Zhang, M. Xue, R. Zhou, H. Zhu, S. Hao, and
X. Lin, “Understanding and detecting mobile ad fraud through the
lens of invalid traffic,” in Proceedings of the 28th ACM Conference
on Computer and Communications Security (CCS), Seoul, South
Korea, Nov. 2021.

[13] J. Szurdi, M. Luo, B. Kondracki, N. Nikiforakis, and N. Christin,
“Where are you taking me?understanding abusive traffic distribution
systems,” in Proceedings of the 30th International World Wide Web
Conference (WWW), Virtual Conference, Apr. 2021.

[14] Z. Cai, Y. Nan, X. Wang, M. Long, Q. Ou, M. Yang, and Z. Zheng,
“DARPA: combating asymmetric dark UI patterns on android with
run-time view decorator,” in Proceedings of 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Network
(DSN), Porto, Portugal, Jun. 2023.

[15] J. Crussell, R. Stevens, and H. Chen, “MAdFraud: Investigating
ad fraud in android applications,” in Proceedings of the 12th ACM

International Conference on Mobile Computing Systems (MobiSys),
Bretton Woods, NH, Jun. 2014.

[16] T. Zhu, Y. Meng, H. Hu, X. Zhang, M. Xue, and H. Zhu, “Dissecting
click fraud autonomy in the wild,” in Proceedings of the 28th ACM
Conference on Computer and Communications Security (CCS),
Seoul, South Korea, Nov. 2021.

[17] C. M. R. Haider, A. Iqbal, A. H. Rahman, and M. S. Rahman, “An
ensemble learning based approach for impression fraud detection in
mobile advertising,” J. Netw. Comput. Appl., vol. 112, pp. 126–141,
Feb. 2018.

[18] List of search engines, https://en.wikipedia.org/wiki/List_of_search_
engines, [Accessed: 2024-04-11].

[19] P. Pearce, V. Dave, C. Grier, K. Levchenko, S. Guha, D. McCoy,
V. Paxson, S. Savage, and G. M. Voelker, “Characterizing
large-scale click fraud in ZeroAccess,” in Proceedings of the 21st
ACM Conference on Computer and Communications Security
(CCS), Scottsdale, AZ, Nov. 2014.

[20] It’s not just websites, google search partner fraud has infiltrated
the app ecosystem, https://www.bandt.com.au/its-not-just-websites-
google-search-partner-fraud-has- infiltrated- the-app-ecosystem/,
[Accessed: 2024-04-11].

[21] S. Almahmoud, B. Hammo, and B. Al-Shboul, “Exploring
non-human traffic in online digital advertisements: Analysis and
prediction,” in Computational Collective Intelligence - 11th
International Conference, (ICCCI), Hendaye, France, Sep. 2019.

[22] D. Yang, Z. Li, X. Wang, K. Salamatian, and G. Xie, “Exploiting the
community structure of fraudulent keywords for fraud detection in
web search,” Journal of Computer Science and Technology, vol. 36,
no. 5, pp. 1167–1183, Sep. 2021.

[23] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), Minneapolis, MN, Jun. 2019.

[24] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence
embeddings using siamese BERT-networks,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural
Language Processing(EMNLP-IJCNLP), Hong Kong, China, Nov.
2019.

[25] B. Li and L. Han, “Distance weighted cosine similarity measure
for text classification,” in Proceedings of the 14th International
Conference on Intelligent Data Engineering and Automated
Learning (IDEAL), Hefei, China, Oct. 2013.

[26] GDPR, https://gdpr-info.eu/, [Accessed: 2024-04-11].
[27] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM

networks for improved phoneme classification and recognition,”
in Proceedings of the 15th International Conference on Artificial
Neural Networks. (ICANN), Warsaw, Poland, Sep. 2005.

[28] Lingua, https : / / github . com / pemistahl / lingua - py, [Accessed:
2024-04-11].

[29] C. E. Herley, F. Tu, and J. Pillai, Detecting and mitigating abusive
network activity based on versioned browser usage, US Patent App.
17/852,267, Dec. 2023.

[30] Pytorch, https://pytorch.org/, [Accessed: 2024-04-11].
[31] K. Song, X. Tan, T. Qin, J. Lu, and T. Liu, “MPNet: Masked and

permuted pre-training for language understanding,” in Proceedings
of the 34rd Conference on Neural Information Processing Systems
(NeurIPS), Virtual Conference, Dec. 2020.

[32] Sentence-transformers/all-mpnet-base-v2, https://huggingface.co/
sentence-transformers/all-mpnet-base-v2, [Accessed: 2024-04-11].

[33] I. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” in Proceedings of the 7th International Conference
on Learning Representations (ICLR), New Orleans, LA, May
2019.

[34] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?”
In Proceedings of the 36rd Conference on Neural Information
Processing Systems (NeurIPS), New Orleans, LA, Nov. 2022.

[35] Y. Gong, D. Ran, X. He, T. Cong, A. Wang, and X. Wang, “Safety
misalignment against large language models,” in Proceedings of the

107

2025 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2025.

[36] Google chrome aims to solve account hijacking with device-bound
cookies, https : / / www . csoonline . com / article / 2084025 / google -
chrome- aims- to- solve- account- hijacking- with- device- bound-
cookies.html, [Accessed: 2024-04-11].

[37] M. Singh, “Privacy-preserving marketing analytics: Navigating the
future of cookieless tracking,” International Journal of Enhanced
Research in Management & Computer Applications, vol. 13,
pp. 2319–7471, Mar. 2024.

[38] A. G. Dobrakowski, A. Pacuk, P. Sankowski, M. Mucha, and
P. Brach, “Improving ads-profitability using traffic-fingerprints,”
in Proceedings of the 20th Australasian Data Mining Conference
2022 (AusDM), Western Sydney, Australia, Dec. 2022.

[39] J. Yang, S. Rahardja, and S. Rahardja, “Click fraud detection:
HK-index for feature extraction from variable-length time series of
user behavior,” in Proceedings of 32nd IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), Xi’an, China,
Aug. 2022.

[40] H. Xu, D. Liu, A. Koehl, H. Wang, and A. Stavrou, “Click fraud
detection on the advertiser side,” in Proceedings of the 19th
European Symposium on Research in Computer Security
(ESORICS), Wroclaw, Poland, Sep. 2014.

[41] J. Kim, J. Park, and S. Son, “The abuser inside apps: Finding
the culprit committing mobile ad fraud,” in Proceedings of the
2021 Annual Network and Distributed System Security Symposium
(NDSS), Virtual Conference, Feb. 2021.

[42] C. Cao, Y. Gao, Y. Luo, M. Xia, W. Dong, C. Chen, and X. Liu,
“AdSherlock: Efficient and deployable click fraud detection for
mobile applications,” IEEE Trans. Mob. Comput., vol. 20, no. 4,
pp. 1285–1297, Apr. 2021.

[43] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G.
Xu, and J. Klein, “FraudDroid: Automated ad fraud detection for
android apps,” in Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), Lake Buena
Vista, FL, Nov. 2018.

[44] H. Lee, J. Lee, D. Kim, S. Jana, I. Shin, and S. Son, “AdCube:
WebVR ad fraud and practical confinement of third-party ads,” in
Proceedings of the 30th USENIX Security Symposium (Security),
Virtual Conference, Aug. 2021.

[45] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Z. Snow, F.
Monrose, and M. Antonakakis, “The circle of life: A large-scale
study of the IoT malware lifecycle,” in Proceedings of the 30th
USENIX Security Symposium (Security), Virtual Conference, Aug.
2021.

[46] M. Yao, J. Fuller, R. P. Kasturi, S. Agarwal, A. K. Sikder, and
B. Saltaformaggio, “Hiding in plain sight: An empirical study of
web application abuse in malware,” in Proceedings of the 32nd
USENIX Security Symposium (Security), Anaheim, CA, Aug. 2023.

[47] J. Fuller, R. P. Kasturi, A. K. Sikder, H. Xu, B. Arik, V. Verma,
E. Asdar, and B. Saltaformaggio, “C3PO: large-scale study of
covert monitoring of c&c servers via over-permissioned protocol
infiltration,” in Proceedings of the 28th ACM Conference on
Computer and Communications Security (CCS), Seoul, South
Korea, Nov. 2021.

[48] R. P. Kasturi, J. Fuller, Y. Sun, O. Chabklo, A. Rodriguez, J. Park,
and B. Saltaformaggio, “Mistrust plugins you must: A large-scale
study of malicious plugins in wordpress marketplaces,” in
Proceedings of the 31st USENIX Security Symposium (Security),
Boston, MA, Aug. 2022.

[49] O. Alrawi, M. Ike, M. Pruett, R. P. Kasturi, S. Barua, T. Hirani,
B. Hill, and B. Saltaformaggio, “Forecasting malware capabilities
from cyber attack memory images,” in Proceedings of the 30th
USENIX Security Symposium (Security), Virtual Conference, Aug.
2021.

[50] J. Fuller, M. Yao, S. Agarwal, S. Barua, T. Hirani, A. K. Sikder, and
B. Saltaformaggio, “Enhanced Web Application Security Through
Proactive Dead Drop Resolver Remediation,” in Proceedings of the
32nd ACM Conference on Computer and Communications Security
(CCS), Taipei, Taiwan, Oct. 2025.

[51] S. Wang, C. Liu, X. Gao, H. Qu, and W. Xu, “Session-based fraud
detection in online e-commerce transactions using recurrent neural
networks,” in Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD), Skopje, Macedonia, Sep. 2017.

[52] B. Branco, P. Abreu, A. S. Gomes, M. S. C. Almeida, J. T. Ascensão,
and P. Bizarro, “Interleaved sequence rnns for fraud detection,” in
Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), Virtual Conference, Aug. 2020.

[53] Z. Wang, Q. Wu, B. Zheng, J. Wang, K. Huang, and Y. Shi,
“Sequence as genes: An user behavior modeling framework for
fraud transaction detection in e-commerce,” in Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), Long Beach, CA, Aug. 2023.

[54] C. Liu, L. Sun, X. Ao, J. Feng, Q. He, and H. Yang,
“Intention-aware heterogeneous graph attention networks for fraud
transactions detection,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD),
Virtual Conference, Aug. 2021.

[55] X. Li, W. Yu, T. Luwang, J. Zheng, X. Qiu, J. Zhao, L. Xia, and
Y. Li, “Transaction fraud detection using GRU-centered
sandwich-structured model,” in Proceedings of the 22nd IEEE
International Conference on Computer Supported Cooperative
Work in Design (CSCWD), Nanjing, China, May 2018.

[56] M. Yao, R. Zhang, H. Xu, S. Chou, V. C. Paturi, A. K. Sikder,
and B. Saltaformaggio, “Pulling off the mask: Forensic analysis
of the deceptive creator wallets behind smart contract fraud,” in
Proceedings of the 45th IEEE Symposium on Security and Privacy
(S&P), San Francisco, CA, May 2024.

[57] J. Zhang, Y. Xie, F. Yu, D. Soukal, and W. Lee, “Intention and
origination: An inside look at large-scale bot queries,” in
Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2013.

Appendix A.
Session Slicing Threshold Selection

Table 9 presents coverage and similarity statistics across
different time-based thresholds for session generation,
assessing their impact on intra-session and inter-session
similarity. These statistics are derived from the traffic of
10,000 randomly sampled organic users. Column 1 lists the
session-slicing thresholds, ranging from 10 to 120 minutes.
Since COSEC relies on session-level information for
detecting ad-click fraud, a session is considered a valid
input only if it contains at least three search requests after
slicing. Consequently, consecutive search requests from the
same user may form multiple sessions, some of which may
not meet this criterion. We define a user’s traffic (identified
by Cookie ID) as covered by COSEC if at least one session
from that user qualifies as a valid input, as shown in
Column 2. Additionally, Column 3 reports request-level
coverage, representing the total number of search requests
within these valid sessions across the entire dataset. To
evaluate session coherence, we compute session query
similarity using the method described in §3.2.1 and report
its percentiles (5%, 25%, median, 75%, and 95%) along
with the average in Columns 4-9. This metric quantifies
intra-session similarity, capturing the semantic consistency
of queries within a session. To assess inter-session
continuity, we measure the query similarity between the last
query of an earlier session and the first query of a later
session when a user’s traffic spans multiple sessions.
Columns 10-15 present the percentiles and average of this

108

TABLE 9: Coverage and Similarity Statistics Over Different Time Intervals

Threshold Coverage (%) Intra-Session Similarity Inter-Session Similarity

%Users %Request 5% 25% Median 75% % 95% Avg. 5% 25% Median 75% % 95% Avg.

10 mins 86.4% 83.5% 0.106 0.295 0.452 0.629 0.908 0.471 0.018 0.104 0.203 0.365 0.920 0.275
20 mins 89.6% 87.2% 0.106 0.295 0.445 0.614 0.896 0.463 0.018 0.097 0.187 0.349 0.892 0.263
30 mins 90.8% 88.9% 0.108 0.296 0.441 0.606 0.890 0.460 0.015 0.094 0.179 0.343 0.893 0.258
40 mins 91.7% 90.1% 0.108 0.296 0.438 0.602 0.886 0.458 0.012 0.091 0.175 0.338 0.902 0.254
50 mins 92.3% 90.8% 0.108 0.297 0.436 0.596 0.887 0.457 0.012 0.090 0.175 0.338 0.921 0.254
60 mins 92.6% 91.4% 0.108 0.296 0.434 0.594 0.884 0.455 0.011 0.090 0.172 0.336 0.972 0.254
70 mins 92.9% 91.9% 0.108 0.296 0.433 0.592 0.882 0.454 0.011 0.089 0.172 0.336 0.947 0.254
80 mins 93.2% 92.2% 0.108 0.295 0.431 0.590 0.878 0.453 0.011 0.088 0.171 0.335 0.982 0.254
90 mins 93.4% 92.6% 0.109 0.295 0.430 0.589 0.877 0.452 0.009 0.088 0.169 0.335 1.000 0.254
100 mins 93.7% 92.8% 0.110 0.296 0.429 0.588 0.875 0.451 0.010 0.088 0.167 0.334 1.000 0.254
110 mins 93.9% 93.0% 0.110 0.296 0.428 0.587 0.873 0.451 0.009 0.087 0.167 0.335 1.000 0.254
120 mins 94.0% 93.3% 0.110 0.296 0.427 0.586 0.874 0.451 0.009 0.087 0.166 0.333 1.000 0.254

TABLE 10: FEATURE DESCRIPTIONS AND SCALED VALUES

Feature Name Feature Description Scaled Value

Session Length Number of requests in the session Total Count
Time Span Total time duration of the session Total Seconds
Time Interval Time intervals between search requests in a session Min, Max, Average
Page Number Page number requested in the search results Min, Max, Average
Clicks Number of clicks made on search results Min, Max, Average
Returned Ad Count Number of ads returned in the search results Min, Max, Average
Revenue Revenue generated from the session Min, Max, Average, Sum
Query Length* Number of characters in the query string Min, Max, Average
Query Word Count* Number of words in the query string Min, Max, Average
Query Similarity∗ Similarity between successive queries in the session Min, Max, Average

*: Query Similarity requires computing resource-intensive query embedding, resulting in an overhead similar to COSEC.

TABLE 11: Overhead Measurement.

Dataset Period Embedding Phase Inference Phase

Time (min) Avg. Mem Avg. GPU Mem Time (min) Avg. Mem Avg. GPU Mem

Evaluation Dataset Feb 1st - 14th 277.17 2.89 GB 0.75 GB 0.47 6.05 GB 0.72 GB

Testing Dataset 1 Mar 1st − 7th 282.35 2.87 GB 0.76 GB 0.47 6.02 GB 0.72 GB

Testing Dataset 2 Mar 8th − 14th 276.90 2.88 GB 0.77 GB 0.46 5.98 GB 0.71 GB

Testing Dataset 3 Mar 15th − 21st 270.32 2.92 GB 0.74 GB 0.47 6.12 GB 0.72 GB

Testing Dataset 4 Mar 22nd − 28th 288.42 2.89 GB 0.75 GB 0.47 6.00 GB 0.72 GB

Total N/A 279.3 2.89 GB 0.75 GB 0.47 6.03 GB 0.72 GB

inter-session similarity distribution, reflecting the degree of
semantic separation between adjacent sessions.

For threshold selection, a larger threshold T results in
more individual requests from the same user being grouped
into a single session. This leads to longer sessions and higher
coverage at both the user and request levels, as shown in
Columns 2 and 3. Notably, as session length increases, the
diversity of search topics within a session also grows, causing
intra-session similarity to decrease. In addition, with a longer
enforced temporal gap between sessions, we assume that
users are more likely to shift search topics, leading to lower
inter-session similarity.

Our goal is to identify a proof-of-concept threshold for
session generation that balances high coverage and
intra-session similarity with relatively low inter-session
similarity. Based on this, we select 60 minutes as the
session threshold in our experiments. First, coverage
stabilizes beyond this point, with only marginal gains at
higher thresholds (e.g., 92.6% of sessions and 91.4% of

requests at 60 minutes, compared to 94.0% and 93.3% at
120 minutes). Second, intra-session similarity remains high,
with a median of 0.434 and an average of 0.455, preserving
meaningful behavioral patterns within sessions. In contrast,
inter-session similarity is sufficiently low, with a median of
0.172 and an average of 0.254, ensuring that sessions
remain distinct in terms of search topics. This selection
effectively balances coverage, coherence within sessions,
and topic differentiation between sessions, making 60
minutes a suitable threshold for our framework.

Appendix B.
Statistical Features For SOTA Baseline Models

Table 10 shows the statistical features used in §5.4 for
baseline models. We collected these statistical features from
the same raw session knowledge available to COSEC,
which is assumed to be available to most search engines.
The first two rows of Table 10 show our collecting the

109

session length in the count of requests and the overall
period in seconds. Rows 3-9 show our collecting the
minimum, maximum, and average values for time intervals,
query lengths, query word counts, query similarities, page
numbers, clicks, returned ad counts, and the ad revenue
from requests in a session. We additionally add the total
revenue to the statistical feature set. Notably, as introduced
in §3.2, getting query similarity features requires embedding
queries with COSEC’s language model in advance. Since
this process accounts for the major overhead for COSEC,
as shown in Table 11, models depending on these statistical
features will cause a similar overhead to COSEC.

Appendix C.
Overhead Measurement

Search engines may receive millions or even billions of
search sessions daily. A deployed fraud detection algorithm
should incur minimal cost while capturing significant
fraudulent traffic with high precision. To ensure COSEC’s
prototype meets this requirement, we measure the overhead
of deploying COSEC for prediction. We tested the
execution overhead on our testbed introduced in §5.1 using
100,000 sessions from each dataset. We used a single-thread
Python program to embed features from each search request
and a batch size of 64 for fraud prediction. Table 11 lists
the execution time and resource breakdown.

On average, the program processes embedding for
100,000 sessions in 279.3 minutes, with an average memory
usage of 2.89 GB and 0.75 GB GPU memory usage during
embedding. For prediction, COSEC processes 100,000
sessions within 0.47 minutes, with memory usage of 6.03
GB and 0.72 GB GPU memory usage. Given that this
overhead execution is done on a bare-metal
testbench,COSEC can be easily deployed in a more robust
and faster production environment with reasonable resource
costs.

Appendix D.
Top Search Engines’ Search Suggestion

Figure 9: Top Search Engine’s Searching Suggestion Results
From Typed Keyword.

110

Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper investigates the ability of linguistic similarity
between successive queries in a search query sequence to
identify search click fraud. The paper shows that statistical
features extracted from search sessions are ineffective since
they exhibit overlap between fraudulent and organic
sessions. Instead, the paper combines such features with
cosine similarity of successive queries, and also temporal
features, to develop a COSEC model that achieves
improved precision and recall over state-of-the-art search
click fraud detection solutions. The paper further discusses
case studies that show how fraudsters evolve their strategies,
including using search suggestions to increase the similarity
of their query sessions.

E.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

E.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field. Search click fraud is a well-known
and non-stationary problem. COSEC takes a principled
statistical approach to evaluating session coherence and
identifying fraudulent sessions. COSEC is also
evaluated via case studies in a real-world search ad
context, demonstrating its practicality.

E.4. Noteworthy Concerns

1) The work does not evaluate how an adaptive adversary
could thwart COSEC’s protections by reverse
engineering COSEC’s methods and model.

2) The dataset used for evaluation does not span the entire
space of search behavior but rather contains two classes
of known-good and known-fraudulent search activity.
As such, the evaluated performance of COSEC may
not generalize to the full population of search sessions.
However, acquiring such a dataset was deemed not
technically feasible by the reviewers, so the dataset used
in the work is considered a substantial contribution that
will enable defenses and future science.

111

