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Abstract—Criminals, using crypto wallets referred to as
Deceptive Creator Wallets (DCWs), have orchestrated
fraudulent activities by luring victims to transfer funds to
fraud smart contracts. Since it is almost impossible to
reverse the transactions or pinpoint the true identity of the
criminals, the industry has turned to flagging such contracts
as user warnings. However, current mitigation efforts focus
on individual contracts, overlooking the DCWs behind the
scenes. Consequently, our research found that this oversight
allows fraud to thrive. To address this, we developed CoCo,
an automated forensic analysis pipeline that processes a
single fraud contract and generates evidence that the legal
authorities need to mitigate the fraud. Applying CoCo to 157
confirmed fraud contracts, our research uncovered 1,283,198
associated contracts linked to 91 DCWs, responsible for
2,638,752 ETH ($2,089,504,682) in illicit profits. More
alarmingly, CoCo traces the fraudulent activities back to
September 2017. In response, we are closely collaborating
with Etherscan and the FBI to combat the fraud identified in
our study.

1. Introduction

Smart contracts have been exploited to orchestrate
fraudulent activities, resulting in financial losses [1], [2].
In this scenario, the criminals use their crypto wallets,
referred to as Deceptive Creator Wallets (DCWs), to
deploy fraud smart contracts. The criminals then lure
victims with false promises, leading them to transfer funds
to these contracts, which then illicitly divert the victims’
assets to criminal-designated recipients. The irreversible
and anonymous nature of the blockchain makes it
impossible to reverse the transactions or to identify these
criminals. To mitigate this, the industry flags fraud
contracts as warnings to users, as illustrated in Figure 1
on Etherscan [3]. In fact, several works have been
proposed to automate fraud contract reporting [4]–[18].
Unfortunately, current mitigation efforts focus on
individual contracts, overlooking the DCW orchestrating
the fraud.

Compounding the issue is the low cost of smart
contract deployment, as DCWs can continuously deploy
new fraud contracts to avoid detection. Additionally, the
blockchain not only enables wallets to deploy contracts but

also allows contracts to deploy others, giving DCWs a
fast-track method for fraud contract creation through
continuous invocation. DCWs use this to conceal the
recipients of fraud contracts by dynamically resolving
on-chain data. This approach leads to the quick
deployment of complex, interconnected fraud networks,
where these associated contracts exhibit various
capabilities, including asset transfer and new contract
deployment.

Imagine this forensic scenario: FBI agents receive a
report concerning a contract suspected of being involved in
fraudulent activities. Ideally, FBI agents would go beyond
merely mitigating the reported fraud contract; they would
proactively delve into investigating the DCW orchestrating
these activities to collect critical evidence. This effort
aligns with the principles of the Uniform Electronic
Transactions Act (UETA) [19] and National Commerce
Act (E-Sign Act) [20], which recognizes the importance of
electronic agents (DCW in our paper) in the initiation,
execution, and management of electronic contracts.
Motivated by the UETA and E-Sign Act, this evidence
should encompass: 1 The associated contracts from the
same DCW along with their recipients. This evidence
reflects the concept of managing electronic contracts, as
defined by the UETA and E-Sign Act. 2 The provenance
of dynamically resolved recipients, related to the act of
initiating electronic contracts as delineated in the UETA
and E-Sign Act. 3 The attribution of capabilities to the
contracts. This evidence is motivated by the act of
executing electronic contracts, as highlighted in the UETA
and E-Sign Act. FBI agents could then submit collected
evidence to the court. Upon authorization, FBI agents
could utilize Evidence 1 to flag additional accounts (i.e.,
wallets, contracts) on the blockchain and freeze
assets [21], effectively disrupting the fraudulent activities.
Additionally, Evidence 2 sheds light on the origins of
dynamically resolved recipients, providing agents with
indicators of early recipient changes and enabling more
proactive mitigation. Finally, the analysis of contract
capabilities in Evidence 3 uncovers targeted mitigation
strategies for specific capabilities (e.g., monitoring
contracts designating fraud contract recipients).

Traditionally, FBI agents would acquire such evidence
by relying on explicit clues, the historical transactions. In
fact, prior research [4], [5] leveraged these explicit clues to
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Figure 1: Flagged fraud contract.

identify fraud contracts. However, these contracts are just
the starting point for forensic analysis. A smart contract
can execute various transactions depending on different
conditions. Consequently, the FBI agents quickly discover
that a forensic approach that focuses strictly on explicit
clues might cause investigators to omit evidence from
yet-to-be-executed transactions, thereby halting the
investigation until the relevant transactions occur.

From a different perspective, contract transactions on
the blockchain are direct results of their implementations.
Therefore, we shifted our focus to how a smart contract’s
implementation could reveal implicit clues of fraudulent
activities orchestrated by the DCW, such as (1) future
transactions that the DCW’s contract is programmed to
execute, (2) the origin of the recipients used by the
DCW’s contract, and (3) the capabilities with which the
contract is equipped. In fact, several works have been
proposed [22]–[28] to perform program analysis on smart
contracts. However, these techniques target vulnerability
detection in benign contracts. The significant distinction
between identifying vulnerabilities and discerning fraud
capabilities means that these methods are not readily
adaptable to extract forensic clues from fraud contracts
and the DCW operating behind the scenes.

Drawing inspiration from real-world forensic
investigations that gather evidence from various clues at
crime scenes, we propose combining explicit clues with
advanced program analysis of fraud contracts for enhanced
forensic analysis. Based on this insight, we developed
CoCo1, a post-detection forensics pipeline enabling FBI
agents to extract three key pieces of evidence of the DCW.
Given one fraud contract, CoCo first uses Associated
Contracts Recovery (§3.1.1) to pinpoint associated
contracts by utilizing explicit clues. This process mirrors
the method of unraveling a criminal network, starting from
one identified suspect and extending to the ringleader,
additional suspects, and the middleman orchestrating the
recruitment. Next, CoCo conducts symbolic analysis on
each contract deployed by the DCW (§3.1.2), identifying
all potential recipients without depending on historical
transactions. This step is comparable to identifying all
possible contacts of the suspects, even those yet to engage
in criminal activity. CoCo then combines explicit and

1. CoCo: ForensiCs on CreatOr Wallet Behind Smart COntract Fraud

implicit clues in Recipient Provenance Investigation (§3.2)
to uncover the origin of dynamically resolved recipients.
This resembles discovering the middleman’s hidden list of
recruits, enabling authorities to detect future suspect
recruitment early. Finally, CoCo applies Capability
Attribution Analysis (§3.3) to assign specific capabilities to
each contract deployed by the DCW, similar to a detective
deducing the role each suspect plays in a criminal network
to tailor countermeasures for each role.

Deploying CoCo on 157 confirmed fraud contracts, our
work identified 1,283,198 associated contracts across 91
DCWs, making a total of 2,638,752 ETH ($2,089,504,682)
illicit profit. More alarmingly, CoCo’s analysis tracked the
fraudulent activities back to September 2017. We are
closely collaborating with Etherscan [3] and the FBI [29]
(§B) to mitigate the fraud uncovered by our study. Lastly,
we have made CoCo available at
https://github.com/CyFI-Lab-Public/COCO.

2. Motivation

Accounts (i.e., wallets and contracts) on Ethereum are
identified by 40-character hexadecimal strings, known as
addresses. Similarly, transactions on Ethereum can be
identified by 64-character hexadecimal strings, commonly
referred to as transaction hashes. To enhance the
readability of this paper, we have used abbreviations of the
last six characters of the addresses and transaction hashes
with the prefixes W- for wallet, C- for contract, and T- for
transaction. For example, the fraud contract shown
in Figure 2a can be identified by address,
0x70305b080efc49eb5dfb9bda78aea516c3 98f804 . In
this paper, we will refer it as C- 98f804 . For the full
addresses and transaction hashes used throughout this
paper, readers are directed to Table 6 in §C.

2.1. Background

Smart Contract. A smart contract is a self-executing
program operating on a blockchain, set to action when
specific predefined conditions are satisfied. The execution
of a smart contract comprises three core components: (1)
the contract’s bytecode, which contains the compiled
instructions of the smart contract code, (2) an execution
context, which includes the Program Counter (PC),
available gas, stack, and memory, These components
manage the execution flow and intermediate computations
during the execution of a smart contract, (3) a persistent
storage mechanism specific to each smart contract,
providing a mapping from 256-bit words to corresponding
256-bit words. This storage is utilized by smart contracts
to preserve the state across transactions.
Transaction & Trace. A transaction represents an action
initiated by an external account (i.e., a user’s wallet) that
interacts with the blockchain. Transactions can encompass
various actions, such as transferring ETH, interacting with
a smart contract, or even deploying a new contract. Traces,
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on the other hand, provide step-by-step execution logs that
detail all the internal calls and state changes triggered by a
transaction. For example, consider a transaction in which a
user sends ETH to a smart contract, which then distributes
this ETH to other addresses based on its logic. The
transaction itself records the user’s action of sending ETH
to the contract. However, the trace of this transaction
would reveal the detailed sequence of events inside the
contract, such as the contract calling its internal functions
to distribute ETH to other addresses.
Event Logs. Event logs are small data amounts on the
blockchain that utilize five opcodes (LOG0 to LOG4) for log
emission. Each log can include up to four 32-byte topics
and a data section. The topics typically describe the event,
often incorporating the event signature—a
Keccak-256 [30] hash of the event name along with its
parameter types. This allows for targeted searches, such as
identifying logs for specific events or addresses. The data
section complements the topics by providing
non-searchable additional information. It can contain more
complex details, like arrays or strings, making the logs
both comprehensive and flexible. Consider an event like
event Event(address indexed from, address to).
For this event, the first topic is derived using a
Keccak-256 hash on the event signature
Event(address,address). The second topic is the
indexed from address. Since the to parameter is not
indexed, its value is stored in the log’s data section.

2.2. Preliminary Forensics Investigation
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Figure 2: Fraud contract in the real world.

To illustrate the method of deriving the three pieces of
evidence, we devised a hypothetical forensic investigation
scenario modeled on a real-world case. FBI agents
received information from an individual who reported
being defrauded by a deceptive message on Telegram [31].
As shown in Figure 2a, the DCW propagated a deceptive
message impersonating Crypterium [32], a blockchain
startup. In this message, the DCW promised a giveaway,
conditional upon interactions with the contract identified
by C-98f804. Upon delving deeper, the agents uncovered

several similar fraudulent messages disseminated across
various platforms, as listed in Figure 5 and Figure 6
in §A. To ascertain the fraudulent nature of this contract,
the agents located a confirmation from Crypterium on
X.com [33], as evidenced in Figure 2b.

At this juncture, the agent possessed only the
confirmed fraud contract address, C-98f804. To proceed
with legal action, the agents required three pieces of
evidence, as outlined in §1, which would be necessary to
present in court. This would support more proactive
mitigation strategies, such as flagging more fraud contracts
or freezing the associated wallets or contracts (as was
previously done by the FBI [21], [34]).
Associated Contracts & Recipients. Extracting
Evidence 1 consists of two steps: first, identifying the
associated contracts and, second, pinpointing their
recipients. Our approach begins by leveraging the
transparent nature of the blockchain to reveal associated
contracts. Specifically, our investigation started with an
analysis of transactions to C-98f804, leading us to
transaction T-8bbae5, which deployed the contract. The
sender information embedded in this transaction reveals
the DCW as W-521058. Tracing back from this
transaction, we further explored other contracts deployed
by W-521058 directly, amounting to 395,685 contracts in
total. Subsequent examination of transactions from these
contracts unveiled a total of 251,087 contracts with
historical transactions to the same recipient – W-763bc0.

Another problem that emerged during this process is
that 144,597 (36.5%) contracts show no historical
transactions. Sole reliance on explicit clues cannot reveal
the recipients of these contracts. Instead, we turned our
attention to the first implicit clue: The contract’s
implementation could reveal future transactions that the
contracts is programmed to execute. Despite their diverse
logic, fraud contracts still need to employ CALL opcode for
ETH transfers. A detailed analysis of the CALL callsites
within these contracts revealed that all 144,597 contracts
possess the capability to transfer victim ETH to a single
recipient, W-763bc0. As shown on Row 3 of Table 1, this
led to the generation of Evidence 1 , showing that there
are 395,684 associated contracts capable of redirecting
victim assets to the recipient wallet W-763bc0. Notably,
one contract deployed by W-521058 remains unattributed.
The subsequent sections introduce the methods to dissect
this singular contract.
Masquerading As Inactive. The previous analysis of
W-521058 shows that a constant fraud contract
deployment ranged from October 2017 to January 2021.
At first glance, FBI agents might conclude that the DCW
ceased the fraud after January 2021 due to a halt in
deploying new fraud contracts. However, they soon
realized that 98.4% of transactions initiated by W-521058
after that invoked C-48d304.

This motivated us to switch our focus to contract
C-48d304. Our analysis of the implementation showed
that C-48d304 uses opcode CREATE2 to deploy new



TABLE 1: RECOVERED EVIDENCE FROM COCO’S
FORENSICS INVESTIGATION.

Fraud Contract C-98f804

Creator W-521058

Evidence 1 Associated Contracts:
Direct: 395,685 ( 11)

Indirect: 65,330 ( 0)
Recipients: W-763bc0

Evidence 2 C-48d304 → Storage → Contract

Evidence 3 attr1: Forced Transfer (395,684)
attr2: Contract Self-Replication (1)
attr3: Fraud Event Logging (395,684)
attr4: Recipient Resolution (65,330)

Fraud Impact Victim: 232,011
ETH: 1,240,355

: Number of contracts flagged on Etherscan [3].

contracts activated upon its invocation. To make things
worse, the DCW used C-48d304 to indirectly deploy new
contracts, which were designed to transfer victim assets.
This led to the discovery of an additional 65,330
associated contracts, as detailed on Row 3 of Table 1,
significantly expanding the scope of the investigation.

Given the newly discovered associated contracts
deployed indirectly by the DCW, FBI agents now need to
know whether these contracts share the same recipients as
before. Surprisingly, FBI agents quickly realized that they
could not extract recipient addresses as before by
examining the address passed to the CALL opcode because
the contracts dynamically resolved the recipients. This
brought us to the second implicit clue: In-depth program
analysis on the contract could reveal the origin of
dynamically resolved recipients. Equipped with this
implicit clue, we discovered that the newly identified
contracts retrieve values from their storage, which are then
passed as recipient addresses to the CALL opcode.
Recognizing that these indirectly deployed contracts use
storage to determine recipients, the key question became:
Who defines this storage? To answer this question, we
delve deeper into the contract deployment chain (i.e.,
W-521058 → C-48d304 → Child_Contracts). It turned
out that the parent contract C-48d304 defines the storage
of the child contracts during the deployment process.
Interestingly, the recipient address set by the parent
contract points to the same recipient: W-763bc0. By
performing the provenance analysis on the contract
deployment chain, we generated Evidence 2 , as shown
on Row 4 of Table 1. The reconstructed provenance of the
fraud contract deployment chain reveals that 65,330
contracts lack hardcoded recipients. Instead, these
contracts determine the recipient dynamically via their
own storage parameters, as defined by the parent contract
C-48d304.
Capabilities Attribution. Evidence 1 and Evidence 2
present a good opportunity for the agents to flag the

accounts mentioned therein, serving as a reactive strategy
to mitigate the ongoing fraudulent activities. However, due
to the immutable nature of the blockchain, completely
eliminating the DCW from the system is almost
impossible. Therefore, it becomes equally crucial for FBI
agents to implement proactive strategies aimed at
preventing future fraudulent activities. This led to our last
implicit clue: In-detailed program analysis could identify
the capabilities of contracts, which can then be mapped to
corresponding proactive mitigation strategies. Specifically,
as shown on Row 5 of Table 1, we found a total of four
different capabilities presented in the associated contracts,
as Evidence 3 . Our discovery of a hardcoded recipient in
CALL led to the identification of the Forced Transfer
capability group, prompting a reactive strategy to flag
these accounts and their recipients. Additionally, the
detection of CREATE2 opcode usage for deploying
asset-transferring contracts highlighted the Contract
Self-Replication capability group, enabling FBI agents to
proactively flag future deployed contracts. Furthermore, we
pinpointed 395,684 contracts with the Fraud Event
Logging capability, using the LOG opcode to generate
blockchain event logs. Given the indexability of the event
logs, FBI agents can actively monitor these logs for early
detection of fraudulent activities.

With Evidence 1 , Evidence 2 , and Evidence 3
generated, we further evaluated the effectiveness of current
mitigation efforts. Alarmingly, as indicated by on Row
3 of Table 1, only 11 out of 461,015 associated contracts
are flagged on Etherscan [3]. Compounding this issue, we
analyzed historical transactions to these contracts,
assessing the impact of fraud activities by W-521058. This
led to the discovery of 232,011 unique victim addresses
and an illicit profit of 1,240,355 ETH. These findings
highlight the urgent need for forensic analysis focused on
DCWs, and we are collaborating closely with
Etherscan [3] and FBI [29] to mitigate the fraud.
Investigators With CoCo. Upon receiving a fraud smart
contract report, FBI agents input the fraud smart contract
address into CoCo for forensic analysis. After CoCo’s
analysis, FBI agents acquire the three pieces of evidence
discussed. FBI agents can then submit this evidence to the
court and relate each piece of evidence to the UETA [19]
and E-Sign Act [20], as demonstrated in §1. FBI agents
could utilize Evidence 1 to flag additional accounts
involved in the fraudulent activities. Evidence 2 provides
FBI agents with the ability to detect and mark the new
recipients designated by scammers to gather illicit profits
even before these recipients become actively involved.
With Evidence 3 , FBI agents can take appropriate
mitigation actions, as detailed in §3.3.

3. Design

CoCo equips FBI agents with the techniques to
investigate the DCW orchestrating the fraudulent activities
using smart contracts. Starting with a fraud contract, CoCo



Algorithm 1: Identify Associated Contracts
Input: DCW w
Output: Associated Contracts Set C

1 C ← ∅
2 Function GenerateTxnGraph(txn)
3 G← ∅;

// Iterate over traces in txn to build graph
4 for trace ∈ txn do
5 from← trace.from
6 to← trace.to
7 edge← trace.type
8 G.add_edge(from, to, edge = edge)
9 end

10 return G
11 end
// Extract all transactions From w

12 Tw ← GetAllTxnFrom(w);
// Generate contract deployment graph Of w

13 G←
⋃

∀txni∈Tw

GenerateTxnGraph(txni)

// Update C with contracts deployed directly
14 C ← {edge.to|edge ∈ G ∧ edge.type == CreateContract}
// Identify contracts deployed indirectly

15 for si ∈ C do
16 Tsi ← GetAllTxnFrom(si);
17 for trace ∈ GenerateTxnGraph(txn ∈ Tsi ) do

// Handle different trace type
18 switch trace.type do

// If deploy other contracts
19 case CreateContract do

// Extract deployed contract
20 sj ← trace.to

// Get all transactions initiated by
the deployed contract

21 Tsj ← GetAllTxnFrom(sj)
// Track contract recursively

22 G ∪
⋃

∀txn∈Tsj

GenerateTxnGraph(txn)

23 C ← C ∪ sj
24 end
25 end
26 end
27 end
28 return C

generates Evidence 1 by uncovering the associated
contracts from the same DCW along with the recipients
they could interact with (§3.1). Subsequently, CoCo
conducts a recipient provenance analysis on dynamically
resolved recipients to produce Evidence 2 (§3.2). Lastly,
CoCo performs Capability Attribution Analysis to identify
and attribute capabilities to associated contracts,
establishing Evidence 3 .

3.1. Associated Contracts Recovery

Evidence 1 could help FBI agents freeze the assets
and flag associated contracts and recipients beyond the
confirmed fraud contract. To derive Evidence 1 , CoCo
conducts Associated Contracts Investigation and Recipients
Forensic Investigation.

3.1.1. Associated Contracts Investigation. Given a
reported fraud contract α, CoCo begins by extracting all
historical transactions directed to this contract, represented

as T = {t1, t2, ..., tm}. For instance, when considering the
fraud contract C-98f804 detailed in §2.2, CoCo records a
total of 455 transactions directed to it. Naive FBI agents
might assume the first transaction txn1 to be the creation
transaction. Unfortunately, as seen in real-world
situations [35] and in §6.2, there are instances where
victims transact with a fraud contract even before its
deployment, rendering the first transaction an unreliable
indicator. To address this, CoCo traverses through T and
identifies the transaction that creates the fraud contract,
called a creation transaction, denoted as txncr. For the
contract C-98f804, CoCo identifies txncr = T-8bbae5.
This identified creation transaction acts as an explicit clue,
offering FBI agents a crucial lead to determine the sender
of the transaction as DCW’s wallet, denoted as w. Ideally,
the agents would then monitor all transactions initiated by
the w and categorize associated contracts as
{tm.to|tm ∈ T ∧ tm.type == CreateContract}.

Unfortunately, as highlighted in §2.1, W-521058
deployed 65,330 fraud contracts indirectly by invoking
contract C-48d304. Since those transactions are a simple
contract call, tracking only contract creation transactions
initiated by the DCW easily could produce inaccurate
Evidence 1 . This nuance underscores the importance for
FBI agents to discern the deployment chain. To overcome
this challenge, CoCo utilizes the traces of each transaction.
This solution is built upon an observation: If an invoked
contract deploys a new contract during a transaction, this
action will be recorded in the transaction’s traces, as it
forms part of the subsequent activities of the invoked
contract. Armed with txncr, CoCo deploys the
methodology presented in Algorithm 1. As shown
on Line 4 of Algorithm 1, for a given transaction, CoCo
navigates through traces in that invocation to craft the
graph G = (N , E). Here, each node n ∈ N presents an
account, and every edge e ∈ E presents a trace, which
could be subsequent behaviors (e.g., contract invocation,
contract creation). By tracking the trace with type
CreateContract, CoCo is able to identify the contracts
deployed indirectly.

Given the ability to identify contracts deployed both
directly and indirectly from transactions, CoCo now can
identify associated contracts by performing forensic
analysis on the DCW’s wallet w. Specifically, CoCo starts
by tracking all transactions initiated by w (shown
on Line 12 of Algorithm 1), designated as Tw. Then, for
each transaction txni ∈ Tw, CoCo uses
GenerateTxnGraph introduced on Line 2 in Algorithm 1
to distill the internal trace graph, subsequently
consolidating them to form the transaction graph G for
wallet w. Essentially, G encapsulates the transaction used
by w to deploy contracts directly and the invocation of the
contract. To delve deeper into this chain and disclose the
contracts spawned by it, as shown on Line 17
of Algorithm 1, CoCo gathers traces initiated by each
contract si, termed Tsi . If a trace results in
CreateContract (shown on Line 19 of Algorithm 1),
CoCo first updates G with the transactions from this newly



deployed contract recursively and then incorporates the
deployment result into associated contracts.
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0x08: ADDRESS
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…
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Figure 3: Recipient investigation of C-98f804.

3.1.2. Recipient Investigation. The only missing piece of
Evidence 1 now is the recipients, along with the
associated contracts identified. This identification enables
FBI agents to flag accounts and freeze ETH assets more
proactively. However, as illustrated in §2.2, our initial
investigation indicates that 36.5% of the fraudulent
contracts deployed by W-521058 lack any historical
transactions. Relying solely on, or waiting for, these
explicit clues (i.e., transactions) could significantly hinder
the progress of the investigation.

To overcome this challenge, CoCo conducts a
transaction-agnostic symbolic analysis on each associated
contract. Specifically, CoCo designates the input space I,
storage space S, and account balance B as symbolic. This
symbolic designation allows CoCo to conduct a multi-path
exploration based on the contract’s logic. Figure 3 shows
a segment of the opcode in fraud contract C-98f804, as
discussed in §2.2. As shown at address 0x1f in Figure 3,
when CoCo symbolically executes BALANCE opcode to
retrieve the balance of the contract, CoCo marks the
returned value as symbolic. Subsequently, this symbolic
value is used by the GT opcode shown at address 0x25 to
assess whether the balance exceeds 0. Upon reaching the
JUMPI opcode at address 0x2b in Figure 3, which
performs a conditional jump based on the preceding
comparison, CoCo forks the execution state into two paths.
One path, Path1 in Figure 3, operates under the condition
B > 0, while the other, Path2 in Figure 3, assumes
B ≤ 0, allowing CoCo to explore behaviors in both
contexts. As depicted at address 0x31 in Figure 3, the
fraud contract deploys PUSH20 opcode to push an address
addr onto the stack. However, the specific purpose of
addr remains unclear to CoCo. Subsequently, when the
CALL opcode is invoked at address 0x77 of Figure 3,
CoCo retrieves the address addr from the stack, indicating
its use as a recipient address. Notably, the smart contract
permits the invocation of code from other contracts via
DELEGATECALL or CALLCODE. In fraud contracts, such
delegation can obscure potential transaction logic in other
contracts. To uncover all possible recipients used by the
contract, CoCo recursively delves into contracts invoked

with DELEGATECALL or CALLCODE, inheriting constraints
from the caller contract. This transaction-agnostic
analytical method equips FBI agents with the capabilities
to analyze associated contracts and pinpoint potential
recipients, independent of historical transaction data.

3.2. Recipient Provenance Analysis

Following the derivation of Evidence 1 , a subsequent
challenge arises in that not all contracts employ hardcoded
recipients; many use dynamic resolution. As CoCo tracks
recipients from the stack during multi-path exploration
(§3.1.2), dynamically resolved recipients present a
challenge, lacking hardcoded addresses on the stack. This
situation motivates Evidence 2 , which focuses on the
recipient’s provenance, including both the resolution logic
and the recipient’s origin. With Evidence 2 , FBI agents
gain the ability to flag accounts that define recipients and
monitor recipient changes at upstream, enabling proactive
mitigation of fraudulent activities. CoCo employs In
Contract Resolution Analysis and Cross Contract
Resolution Analysis to ascertain the provenance of
dynamically resolved recipients.
In Contract Resolution Analysis. CoCo determines
dynamical resolution when the recipient, identified in
Recipient Investigation (§3.1.2), corresponds to a symbolic
value recps. Then, CoCo conducts a backward slice on
recps to identify the origin of recps. For instance, in
analyzing the fraud contract deployed by C-48d304 (§2.2),
CoCo uncovers that the recipient on the stack is a
symbolic value. When CoCo performs backward slice on
recps, it traces back to opcode AND at address 0x4d,
indicating recps is from a logical AND operation. Moving
further back, CoCo encounters another AND operation at
address 0x37. Continuing this trace, CoCo reaches an
opcode DIV at address 0x21. This division operation
implies that recps is dependent on a division calculation.
The backward slice eventually leads CoCo to address 0x1a
with a SLOAD operation. At that moment, CoCo proves
that recps originates from the contract’s storage. By
examining the parameter passed to SLOAD, a constant
0x00, CoCo concludes that the recipient address is located
in storage location S[0].
Cross Contract Resolution Analysis. The previous
analysis reveals only where the fraud contract loads the
recipient from. However, there is no evidence of which
account defines the recipient address (i.e., the value stored
in S[0]). To address this and draw a full picture of
Evidence 2 , CoCo conducts Cross Contract Resolution
Analysis. Notably, smart contracts rely on the CREATE or
CREATE2 opcodes to deploy other contracts. Executing
these opcodes results in a contract deployment transaction,
and eventually, both opcodes need init code as input.
Motivated by this, once CoCo determines the in-contract
origin of a dynamically resolved recipient, such as S[0], it
identifies the contract’s deployment transaction (as
discussed in §3.1.1). From this transaction, CoCo extracts



the init code used in the contract’s creation. It then
conducts symbolic analysis on this init code to track
changes to the in-contract recipient origin. For instance, in
the case of associated contract C-99bcb3, CoCo pinpoints
its deployment transaction with hash T-d9d53e, initiated
by W-521058 via invoking C-48d304. By analyzing the
direct creator contract, CoCo extracts the init code from
the parameter passed to CREATE2. Subsequent symbolic
analysis on this init code reveals the use of SSTORE
opcode, pointing to key 0 and assigning a hardcoded
address as a value. Consequently, CoCo attributes the
parent contract as the origin of the recipient.

3.3. Capability Attribution Analysis

Evidence 3 attributes specific capabilities to contracts
associated with a confirmed fraud. These capabilities guide
FBI agents in implementing corresponding mitigation
strategies for ongoing and future fraud prevention. CoCo
uses symbolic data, introduced in §3.1.2, effectively
highlighting the information flow to track the capabilities
of associated contracts. An example in §3.2 demonstrates
this: When CoCo detects symbolic data propagation from
SLOAD to the recipient in a CALL opcode, it’s interpreted as
Dynamic Recipient Resolution, triggering the Monitor
mitigation strategy. The 10 capabilities identified by CoCo,
along with semantic models and mitigation strategies, are
outlined in Table 2. As seen on Column 4 of Table 2,
CoCo proposes three different mitigation strategies. The
function F (θ) represents flagging and freezing the account
denoted by θ. S(θ) means scanning the blockchain for
contracts sharing the same code as θ if θ is a contract
address, or for identical data to θ if θ represents raw byte
content. M(θ) indicates monitoring the account specified
by θ. Notably, CoCo’s approach to symbolic analysis,
independent of semantic model knowledge, requires only a
one-time effort and offers ease of extension.
1. Forced Transfer. When the opcode is CALL and the
first element on the stack is not symbolic (hardcoded) and
the second element is greater than zero, this indicates a
Forced Transfer. This capability involves transferring ETH
to a hardcoded recipient address, suggesting a transfer to a
specific address. Identifying and reporting these hardcoded
recipients allows FBI agents to proactively flag and freeze
the extracted recipient accounts.
2. User-Defined Transfer. This occurs when the CALL
opcode is used with a symbolic recipient, which is
specified by the user. The recipient address is usually
derived from user input, typically through CALLDATA or
MLOAD. Reporting this capability allows FBI agents to
proactively flag the recipients specified in the user
transaction.
3. Dynamical Recipient Resolution. In this scenario, the
CALL opcode uses a symbolic first stack element where the
recipient address is dynamically determined. This is
identified when the first stack element depends on the
return of SLOAD. This dynamic resolution allows the DCW

to alter the recipient address. Reporting this capability
allows FBI agents not only to flag the current recipient
address, but also to monitor the location where the
contract load recipient address, in order to detect a change
in the recipient’s address before fraud occurs.
4. Address Allocation. The SSTORE opcode, coupled with
a non-symbolic first stack element that is an address of an
account, indicates Address Allocation capability. Here, a
specific address is hardcoded into storage and subsequently
used in transaction operations, which can be identified if
SLOAD with a particular key equals the non-symoblic data
identified previously and is followed by CALL or
CALLDATA operations. Reporting this allows FBI agents to
proactively flag the account and monitor the transactions
of this contract since it could update the address.
5. Contract Self-Replication. This capability is identified
when either the CREATE or CREATE2 opcode is used with a
non-symbolic first element on the stack. It indicates
Contract Self-Replication, where a contract replicates itself
using a predefined template. This is often used in
fraudulent activities to propagate fraud contracts.
6. Dynamic Contract Deployment. Identified by the use
of CREATE or CREATE2 opcodes with a symbolic first
element on the stack, this capability suggests Dynamic
Contract Deployment. It is marked by the dynamic
deployment of new contracts, which can vary in nature
and functionality based on the input or state, allowing for
varied fraudulent activities.
7. Predefined Contract Redirection. This occurs when
either the DELEGATECALL or CALLCODE opcode is used with
a non-symbolic first element on the stack. It indicates a
redirection of execution to another contract with a hardcoded
address, typically for executing specific fraudulent actions
predefined in the target contract.
8. Dynamic Execution Delegation. Identified by the use
of DELEGATECALL or CALLCODE opcodes with a symbolic
first element on the stack, this capability suggests the
delegation of execution to different contracts based on
dynamic conditions or inputs. It allows a contract to adapt
its execution and fraud strategy based on real-time data or
states.
9. Address Forwarding Strategy. This is observed when
the SSTORE opcode is used with a non-symbolic second
element on the stack that points to an account, and a key
exists such that SLOAD with this key equals the value
previously stored, The loaded value would be passed to
DELEGATECALL or CALLCODE. It indicates a strategic
storing of an address for subsequent use in delegation
operations, implying a planned redirection of execution.
10. Fraud Event Logging. This is observed when CoCo
encounters the LOGX opcode (X ∈ [0, 4]), which is used to
log events. This capability suggests that the contract logs
event that could be used to track the contract’s activities
and identify fraudulent transactions.

CoCo is now equipped with the technique to produce
Evidence 3 by attributing capabilities to each associated
contract and proposing corresponding mitigation strategies.



TABLE 2: FRAUD CONTRACT CAPABILITIES, OPCODE, SEMANTIC MODELS, AND MITIGATION STRATEGIES.

Fraud Capability Opcode Semantic Models Mitigation1

Forced Transfer CALL ¬Symb(Stack[1]) ∧Address(Stack[1]) ∧ Stack[2] > 0 F (Stack[1])

User-Defined Transfer CALL Symb(Stack[1]) ∧ Stack[1] ∈ {CALLDATA,MLOAD}
F (Stack[1])∧Address(Stack[1]) ∧ Stack[2] > 0

Recipient Resolution CALL Symb(Stack[1]) ∧ Stack[1] ∈ SSLOAD ∧ Stack[2] > 0
F (Stack[1])
M(SSLOAD)

Address Allocation SSTORE
¬Symb(Stack[1]) ∧Address(Stack[1]) F (Stack[1])
∧∃k.(SLOAD(k) == Stack[1])
∧(CALL(k) ∨ CALLDATA(k)) M(this)

Contract Self-Replication CREATE ¬Symb(Stack[0]) ∧ Code(Stack[0])
F (return)

CREATE2 S(Stack[0])

Dynamic Contract Deployment
CREATE

Symb(Stack[0]) ∧ Stack[0] ∈ SSLOAD ∧ Code(Stack[0])
F (return)
S(Stack[0])

CREATE2 M(SSLOAD)

Predefined Contract Redirection DELEGATECALL ¬Symb(Stack[0]) ∧Address(Stack[0])
F (Stack[0])

CALLCODE S(Stack[0])

Dynamic Execution Delegation
DELEGATECALL

Symb(Stack[0]) ∧ Stack[0] ∈ {SSLOAD}
F (Stack[0])
M(this)

CALLCODE S(Stack[0])

Address Forwarding Strategy SSTORE
¬Symb(Stack[1]) ∧Address(Stack[1]) F (Stack[1])
∧∃k.(SLOAD(k) == Stack[1]) M(this)
∧(DELEGATECALL(k) ∨ CALLCODE(k)) S(Stack[1])

Fraud Event Logging LOGX (Stack[0] ̸= 0 ∧ Stack[1] ̸= 0) S(Stack[2 : X − 1])
∨(Stack[2], ..., Stack[X − 1]) ̸= 0 S(Mem[Stack[0] : Stack[1]])

1: F flags and freezes the specified account; S scan the content across on-chain data; M monitors the designated account.

This categorization enables FBI agents to implement bulk
mitigation actions effectively.

4. Validation

We implemented a prototype of CoCo in Python
leveraging Mythril [36], with customized module (∼10K
lines) to perform program analysis and on-chain
transaction analysis (∼10K lines). We conducted our
experiments on an Ubuntu 20.04 LTS system equipped
with 12 CPUs and 64GB of memory. For validation
purposes, we randomly selected fraud contracts from our
dataset until we found 12 with different DCWs. The
distribution of ground truth dataset aligns with the overall
distribution of the DCW and the number of fraud contracts
they deployed, shown in Figure 4 in §5.1. Notably, since
contract flagging serves as a user warning and removing
these accounts from the blockchain is almost impossible,
these flagged contracts might still be active. To ensure the
reproducibility of our study, we based our analysis on the
Ethereum state as of June 26, 2023.
Ground Truth. Generating ground truth for the validation
dataset required us to produce both on-chain transaction
ground truth and off-chain contract implementation ground
truth. For transaction ground truth, we deployed an
Ethereum archive node utilizing Reth [37] to access the
on-chain data. For the contract implementation ground
truth, we employed Panoramix [38] and Dedaub [39] to
decompile each contract, followed by a manual inspection

of the decompiled code to ascertain its provenance, logic,
and capabilities.

4.1. Associated Contracts & Recipients

Table 3 presents CoCo’s validation result. As shown in
the False Positive (FP) and False Negative (FN) columns,
CoCo generated seven FPs and one FN. To prevent
overstating performance, we assign one TP in both
Associated Contracts (Columns 3-4 of Table 3) and
Deploy Length (Columns 7-8 of Table 3) if CoCo correctly
identifies all associated contracts and deployment lengths,
respectively, otherwise assigning zero in each case. Given
this, we can see that CoCo achieves an overall accuracy of
90.91% , demonstrating its efficiency in generating precise
forensic evidence. Delving further into the performance of
CoCo, each piece of evidence (Evidence 1 , Evidence 2 ,
and Evidence 3 ) is evaluated. The first two columns
of Table 3 list the abbreviation of each reported fraud
contract processed by CoCo and the uncovered DCW,
respectively. Interested readers can find the full address of
the abbreviation in Table 6. Columns 3-6 show the
validation results for Evidence 1 .

As shown in the Total row, CoCo pinpointed 1,050,705
associated contracts, along with 17 recipients. Our ground
truth data indicates the presence of 1,050,703 associated
contracts with 17 recipients. Upon a thorough
investigation, we found that two FPs can be attributed to
the distinct methods employed by DCWs (Row 6 and Row



TABLE 3: COCO’S VALIDATION.

Contract DCW
Evidence 1 Evidence 2 Evidence 3

FP FN
Associated Contracts Recipients Deploy Length2 Origin GT C

GT C1 GT C GT C GT C

C-98f804 W-521058 461,015 461,015 1 1 987,360 987,360 1 1 2 2 0 0
C-6113fB W-bceE76 1 1 1 1 2 2 1 1 1 1 0 0
C-Fd562c W-82f98B 3 3 1 1 6 6 1 1 1 1 0 0
C-2e14CC W-2499E7 3 3 1 1 6 6 1 1 1 1 0 0
C-8f428e W-b10f4B 2 2 1 1 4 4 1 1 1 1 0 0
C-18B228 W-3CD202 406,559 406,560 1 1 1,626,234 1,626,236 1 0 1 2 4 1
C-805a29 W-6629BA 2 2 1 1 4 4 1 1 1 1 0 0
C-078228 W-2b0878 2 2 1 1 4 4 1 1 1 1 0 0
C-0E712A W-09739F 1 1 3 3 2 2 3 3 1 1 0 0
C-db7aFF W-187307 3 3 3 3 7 7 3 3 3 3 0 0
C-70aae3 W-1AB876 4 4 2 2 10 10 2 2 4 4 0 0
C-e18895 W-5FFDdc 183,108 183,109 1 1 549,324 549,326 1 1 1 1 3 0

Total 12 1,050,703 1,050,705 17 17 3,162,963 3,162,967 17 16 18 19 7 1
1: C is short for CoCo.
2: Deploy Length refers to the number of accounts involved in the deployment of a contract.

This column shows sum of Deploy Length of all associated contracts.

12 of Table 3) in deploying the fraud contracts.
Specifically, CoCo discovered that W-3CD202 and
W-5FFDdc invoked contract C-36FFaE and C-1e3e4e to
introduce new fraud contracts, respectively. In the course
of analyzing C-36FFaE, CoCo identified that, rather than
employing the standard CREATE or CREATE2 operations for
contract deployment, C-36FFaE instead delegated this task
to an alternative contract, C-2C4691. Consequently, CoCo
flagged C-2C4691 as associated contracts. However, a
manual review of C-1e3e4e and C-2C4691 revealed that
they were in fact deployed by different accounts,
W-53C9dA and W-13666c, respectively. Considering that
FBI agents in this case would have no obvious evidence of
the fraud intention, we consider this as FP. Notably, CoCo
still reported these two contracts since they give FBI
agents an important lead on potential contract abuse. We
confirmed that these are rare cases in our dataset. Overall,
CoCo was 90.91% accurate in generating evidence,
making it robust for our evaluation.

4.2. Dynamically Resolved Recipients

Columns 7-10 of Table 3 present the validation result
of CoCo generating Evidence 2 . As illustrated in Column
8 and Column 10 of Table 3, CoCo identified 3,162,963
Deploy Lengths (number of accounts involved in the
deployment of a contract) and 17 origins of recipients. As
shown on Row 6 and Row 12 of Table 3, CoCo generated
FP when analyzing DCW W-3CD202 and W-5FFDdc. This
FP is the direct result of the FP in the Evidence 1
generation, as discussed in §4.1. We also see one False
Negative (FN) shown on Row 6 of Table 3 (W-3CD202)
during the track of the recipient’s origin. As discussed
in §4.1, when W-3CD202 invokes the intermediate contract
C-36FFaE, it delegates the responsibility of deploying
fraud contracts to C-2C4691. By manually dissecting the
implementation of C-36FFaE, we found that the function

it will trigger in C-2C4691 is not hard-coded. Instead, it is
resolved based on the transaction invoking C-36FFaE.
Consequently, the absence of a static entry point hindered
CoCo’s capacity to pinpoint the contract deployment
process used by the DCW, W-3CD202, thereby impeding
the tracing of recipient origins in contracts deployed by
C-2C4691. Nevertheless, as discussed earlier, such
instances are rare cases. A 90.91% accuracy in generating
evidence makes CoCo robust for our evaluation.

4.3. Capability Attribution

Columns 11-12 illustrate the performance of CoCo
regarding the generation of Evidence 3 . As presented in
the Total row, CoCo has successfully grouped 18
associated contracts into attributed capabilities from the 12
fraud contracts. Nonetheless, our verified ground truth
indicates 19 such groups. Further scrutiny, as discussed in
relation to the earlier FP incident detailed in §4.1, reveals
that during the analysis of the transactions originating
from the fraud contract C-36FFaE (shown on Row 6
of Table 3), CoCo included contract C-2C4691 because it
was designated by C-36FFaE to carry out the deployment
of fraud contracts. Since C-2C4691 operates as a
multi-signature wallet contract, CoCo misclassified it as a
separate attributed group. It’s important to note that the FP
in the Evidence 3 generation is intrinsically linked to the
FP in the Evidence 1 generation. FBI agents, by
identifying and excluding C-2C4691 from the forensic
analysis of the DCW, can eliminate this error in the
generation of Evidence 3 as well. Considering the
minimal occurrence of FPs and FNs, coupled with an
accuracy rate of 90.91% , CoCo is validated as an
effective tool for generating the three pieces of evidence of
the DCW that FBI agents require to mitigate fraudulent
activities.



5. Evaluation

In this section, we demonstrate the effectiveness of CoCo
in uncovering the impact of DCWs. We obtained contracts
marked as fraudulent from Etherscan [3]. To avoid false
positives and potential overclaiming, we manually verified
each marked contract by checking for either public reports
or reported victims in Etherscan’s comment section. This
resulted in 157 flagged contracts. We utilized an open-source
project [40] that pulled the Etherscan labeled data.

5.1. Post Deployment Dataset Highlights

Deploying CoCo on our dataset revealed an unnerving
trend in fraudulent activities perpetrated through smart
contracts. Given 157 flagged smart contracts on
Etherscan [3], CoCo uncovered a total of 1,283,198
associated contracts from 91 DCWs behind these
contracts. The distribution of these associated contracts is
presented in Figure 4. Furthermore, as highlighted under
Profit (ETH) in Figure 4, CoCo assessed the impact of
these fraudulent activities by calculating the ETH
equivalent of the illicit profits stolen by DCWs.
Specifically, CoCo determined that DCWs amassed a total
of 2,638,752 ETH in illicit profits, averaging 2.06 ETH
per contract. Interestingly, Figure 4 also reveals a strong
correlation between the number of associated contracts and
the profits accruing to DCWs. This suggests that rather
than relying on a small number of contracts, DCWs are
more inclined to distribute risk across various fraud
contracts. The tactics of DCWs reflect the effectiveness of
current mitigation strategies, such as flagging, in
influencing DCWs’ operations.
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Figure 4: Distribution of associated contracts and illicit ETH
profits across DCWs.

5.2. Impact Of DCW

Table 4 presents the top 10 DCWs with the highest
fraud profit identified by CoCo. Column 1 shows the
abbreviation of each DCW. Columns 2 and 3 show the
start and end dates of each DCW’s fraudulent activities,
respectively. Column 4 details the number of fraudulent
transactions associated with each DCW outlined in
Column 1, arranged temporally. Column 5 indicates the
aggregate quantity of ETH illicitly appropriated by each
DCW. Considering that the objective of the DCW is to

generate real-world currency profits, CoCo converts the
stolen ETH into USD based on the exchange rate at the
time of each transaction; this converted amount is reflected
in Column 6. Beyond assessing the economic impact to
indicate the extent of the fraudulent activities, FBI agents
should also consider the severity the fraud based on the
number of affected individuals. In support of this, CoCo
identifies the associated contracts and their corresponding
transactions, subsequently determining the origin of each
transaction. Such origins are used as the estimation of
victim accounts. Columns 7 through 9 show the minimum,
maximum, and average number of distinct victims engaged
with the DCW detailed in Column 1 on a daily basis.
Column 10 provides a total victim count. To underscore
the significance of CoCo, we compared the efficacy in
victim identification by FBI agents solely from reported
fraud contracts against the enhanced forensics capabilities
equipped by using CoCo.

Table 4 provides insight into the operations of
fraudulent activities conducted via smart contracts. Column
2 reveals that, out of 10 contracts analyzed by CoCo, the
inception of such fraudulent activities dates back five years
to September 2017, which is only two years subsequent to
Ethereum’s introduction [41]. This highlights the
long-standing presence of fraudulent undertakings within
the Ethereum network. It was anticipated that this
prolonged history of fraudulent acts would have garnered
the attention of law enforcement and government agencies,
prompting them to initiate countermeasures. Unfortunately,
when we examine Column 3 of Table 4, it is apparent that
four out of 10 DCWs (40.00%) remain active up to the
date of this study (shown as Jun 2023 in Column 3
of Table 4). For example, Row 1 of Table 4 illustrates
that the fraud led by W-521058 has persisted for five
years. Considering the observed efforts by government
agencies (e.g., the FBI) to combat general cryptocurrency
fraud [21], it is clear that the stealth and complexity of
smart-contract-based fraud have outpaced the investigative
capabilities of legal authorities.

The enduring presence of DCWs, coupled with
inadequate investigative approaches, has led to the rampant
presence of these fraudulent activities. An examination of
Column 4 of Table 4, which details the daily transaction
volume of the DCW listed in Column 1, yields several
notable observations: (1) As evidenced by Rows 1-4
of Table 4, substantial DCWs do not opt for discretion;
instead, they exhibit consistently high volumes of
fraudulent transactions on a daily basis. (2) Although the
transaction volume for less-aggressive DCWs may vary, as
depicted by Rows 5-10 of Table 4, their brief duration of
activity still demonstrates a significant level of traffic.

The high volume of fraudulent transactions directly
correlates with the substantial profits these DCWs yield.
Columns 5 and 6 of Table 4 demonstrate that the foremost
10 DCWs have collectively garnered 2,002,533 ETH
($1,741,081,326) in illicit profits. In reviewing Row 1 of
Table 4, it becomes evident that the most profitable
scheme, conducted by W-521058, has amassed 1,240,355



TABLE 4: TOP 10 DCWS THAT MADE MOST ILLICIT PROFIT THROUGH FRAUD CONTRACTS.

DCW Start
Time

End
Time

Fraud
Transaction Volume ETH USD Victim

Min Max Avg Total w CoCo

W-521058 Oct 2017 Jun 2023 1,240,355 1,384,080,119 1 2,978 471 232,011 209,926%

W-3cd202 Feb 2018 Jun 2023 280,053 192,665,735 1 2,842 303 173,469 113,519%

W-3a3250 Sep 2017 Jun 2023 447,891 141,686,276 2 5,756 295 74,074 116,699%

W-4b2c9b Nov 2017 Jun 2023 13,605 9,639,322 1 99 16 5,833 5,382%

W-9989f8 Apr 2018 Jul 2018 16,706 7,976,355 1 5 0 43 1%

W-ec1ef1 Aug 2022 Feb 2023 976 1,374,083 1 714 67 14,489 0%

W-82f98b Apr 2022 May 2022 416 1,224,971 1 14 5 93 1%

W-e058d6 Dec 2020 Feb 2021 931 1,138,740 1 11 2 130 17%

W-2499e7 May 2022 May 2022 432 901,275 1 8 4 51 2%

W-f09117 Sep 2017 Sep 2017 1,163 394,444 1 19 3 26 0%

Summary Sep 2017 Jun 2023 2,002,533 1,741,081,326 1 5,756 232 493,068 445,556%

ETH ($1,384,080,119) in unlawful earnings, accounting
for 61.94% of the total ETH and 79.50% of the total USD
accumulated by these 10 leading DCWs.

It is clear that fraudulent activities facilitated by smart
contracts present a critical issue, especially considering the
substantial illicit profits they have accrued. Alarmingly, the
situation may escalate when considering the number of
victims impacted by these DCWs. Columns 9-10 of
Table 4 detail the minimum, maximum, and average
number of daily victims for the top 10 DCWs. A closer
look at Column 10 of Table 4 shows that the total victim
count from these fraudulent operations could reach
493,068. Focusing on Row 1 of Table 4, we find that the
fraudulent activities conducted by W-521058 have affected
232,011 individuals, which represents 47.05% of all
identified victims. Comparing Columns 5-6 with Column
10, it is apparent that, on average, each victim has lost
4.06 ETH ($3531.12) to these DCWs. We have thus
demonstrated that fraudulent activities executed via smart
contracts are a great concern, both in terms of the illicit
profits and the number of victims affected. To further
underscore the need for more proactive forensic analysis,
Column 11 of Table 4 shows the potential increase in
identified victims using CoCo. The Summary row
highlights an average gain of 445,556% additional victims,
reinforcing the importance of integrating CoCo into DCW
fraud forensics.

5.3. Drill Down Into Fraud Contracts

As detailed in §5.2, we have established that the illicit
profits collected by the fraudulent activities can reach
$1,741,081,326 and the the number of involved victims
can easily reach 493,068. However, it is unclear whether
the smart contracts driving these frauds exhibit a similar
transaction pattern (e.g., volume) or profit margin. To
address this gap, we delve deeper into the contracts in the
following section. Table 5 lists the top 15 fraudulent

contracts, ranked by the highest illicit profits, as identified
by CoCo. Column 1 shows the abbreviation for each
contract; readers interested in the full address can refer
to Table 6. Columns 2-3 outline the start time and end
time of the fraudulent activities for each contract,
respectively. Column 4 presents the daily fraudulent
transaction volume timeline for each contract in Column 1.
Columns 5-7 show the daily illicit ETH profits for each
contract in Column 1, formatted as Minimum (Min),
Maximum (Max), and Average (Avg). Column 8 tallies the
total amount of ETH each contract has accumulated from
the transactions of victims. To further quantify the impact
of these fraud contracts, CoCo has converted the ETH
amounts into USD based on the historical exchange rates
at the time of each transaction. The corresponding USD
profits are shown in Columns 9-12. Specifically, Columns
9-11 detail the daily USD profits, while Column 12
aggregates the total USD revenue accrued by each contract
throughout its period of activity.

Table 5 provides interesting insights into the fraud
contracts that direct fraudulent activities orchestrated by
DCWs. As discussed in §5.2, we observed that fraudulent
activities tend to have an extended duration of activity.
Meanwhile, an examination of Columns 2-3 in Table 5
indicates that 14 out of 15 contracts (93.33%) have
sustained fraudulent activities for over a year. This
observation could be attributed to the immutable
characteristic of blockchain technology. Specifically, once
fraud contracts are exposed, their perpetrators might not be
concerned about the contracts being terminated. Intuitively,
one might assume that these fraud contracts would exhibit
a consistently high volume of fraudulent activity since the
orchestrators do not have to worry about the contracts
being dismantled. Surprisingly, Column 3 of Table 5
shows that the contracts on Rows 4, 8-10, and 14-15 of
Table 5 (40.00% of the top 15 contracts) undergo a
significant period of dormancy before experiencing a



TABLE 5: TOP 15 FRAUD CONTRACTS IDENTIFIED BY COCO THAT MAKE HIGHEST ILLICIT PROFITS.

Contract Start
Time

End
Time

Daily
Revenue

ETH USD

Min Max Avg Total Min Max Avg Total

C-cd154b Oct 2017 Jun 2023 0.005 8,364 147 304,772 8.690 5,847,875 99,874 206,240,342

C-cc1d68 Feb 2018 Jun 2023 0.060 1,238 53 105,061 52.057 2,402,960 49,762 97,036,980

C-2f9ffe Oct 2019 Jun 2023 0.004 666 42 57,385 7.383 1,029,244 60,650 81,635,779

C-e00b88 May 2021 Jun 2023 0.040 609 37 28,453 99.679 1,267,433 90,000 68,040,043

C-e2985f May 2021 Nov 2022 0.010 14,344 47 25,599 29.309 23,519,179 84,345 45,546,477

C-f03cef Mar 2022 Jun 2023 1.864 613 54 25,596 2236.746 955,632 82,739 39,053,042

C-6f5365 Dec 2019 Jun 2023 4.060 559 15 19,762 593.342 716,962 15,858 20,346,288

C-cedd45 Nov 2021 Jun 2023 0.095 397 32 19,610 410.665 1,161,698 64,659 38,795,418

C-5e0679 Dec 2017 Nov 2022 17.958 450 10 18,689 10,977.451 756,184 11,387 20,543,033

C-3c2551 Nov 2017 Nov 2022 0.630 192 9 16,629 640.500 606,352 22,067 40,074,910

C-af45d2 Nov 2022 Nov 2022 14,592 14,592 14,592 14,592 17,733,852 17,733,852 17,733,852 17,733,852

C-3c9b11 May 2021 Jun 2023 4.992 199 13 10,420 9,148.109 690,314 27,946 21,798,422

C-49c546 Apr 2021 Dec 2022 0.545 268 15 9,697 2,421.490 675,311 41,793 25,828,472

C-47961f Oct 2021 Jun 2023 1.000 500 14 8,627 3,971.950 937,348 27,819 16,858,621

C-b65ed7 Nov 2017 Jun 2023 0.295 232 4 8,322 94.204 177,506 3,027 6,211,922

Summary Oct 2017 Jun 2023 0.004 14,592 325 673,221 7.383 23,519,179 360,436 745,743,608

resurgence of fraudulent activities. This pattern suggests
that, regardless of their lack of concern over contract
removal, orchestrators still take measures to prevent the
fraud contracts from being detected.

Upon reviewing Columns 8 and 12 of Table 5, it is
evident that the top 15 contracts have collectively
accumulated illicit gains of 673,221 ETH ($745,743,608).
It is important to note that the USD profits are calculated
using the historical ETH-to-USD exchange rate
corresponding to the dates of the fraudulent transactions.
Considering the extended duration of the fraudulent
activities and the rising value of ETH, it is conceivable
that the perpetrators might realize even greater profits if
they were to liquidate their ETH holdings at current
market prices. Delving deeper into the profit analysis, a
focus on Columns 7 and 11 of Table 5, which outline the
average daily ETH and USD profits generated by the
contracts listed in Column 1, shows that periods of
dormancy have not impeded the substantial accumulation
of profits by the orchestrators. Referencing Table 5, it is
evident that with the aid of CoCo, FBI agents can
ascertain that the average daily profits of the contracts
amount to 325 ETH and $360,436. These figures constitute
2.23% and 1.53% of the maximum daily profits,
respectively. The data highlighted here underscore the
orchestrators’ proficiency in sustaining a regular flow of
illicit revenue, navigating even through sporadic phases of
dormancy. This revelation amplifies the gravity of
fraudulent activities facilitated by smart contracts and
underscores the urgency to deploy CoCo for

comprehensive forensic analysis.

6. Case Studies

6.1. Case Study 1: Contracts Shared By DCWs

Deploying CoCo on the dataset surprisingly revealed
contract reuse across different DCWs. Specifically, CoCo
identified a total of three different bytecodes used by seven
DCWs involving 16 contracts. The FBI agents may
incorrectly assume that contracts sharing the same
bytecode would execute the same transactions. This
assumption would be valid if these contracts shared the
Forced Transfer capability, which means that hardcoded
recipients are in the code. Interestingly, CoCo reported that
these 16 contracts are all equipped with the Dynamic
Recipient Resolution capability. For example, CoCo
observed that the contracts could execute SLOAD to load an
address from the sixth storage slot. Then, the loaded result
would be utilized as the recipient in the fraudulent
transactions. By performing Recipient Provenance
Analysis, as detailed in §3.2, CoCo discovered that the
sixth storage slot consistently hosted the address of the
creator. Consequently, even though these 16 contracts
share three unique bytecodes, they still engaged in
different transactions.

6.2. Case Study 2: Abuse Of CREATE2

Beyond merely scrutinizing the overarching fraudulent
activities orchestrated by DCWs, deploying CoCo also



enables a detailed examination of their technical evolution.
During the analysis of W-521058, who has collected
around 1,250,355 of illicit ETH profit, CoCo observed an
evolution from manual fraud contract deployment to an
automated fraud contract deployment given C-48d304
with Contract Self-Replication. Compounding this issue,
during the analysis of C-48d304, CoCo discovered that
instead of using the CREATE opcode, the DCW employed
CREATE2. The CREATE opcode computes the address of the
deployed contract using Keccak256 [30] on sender and
nonce where sender is the address of the sender and
nonce represents the number of transactions originating
from the sender’s address. Although CREATE’s
functionality is deterministic, predicting the address of the
deployed contract remains a challenge since it relies on the
on-chain data, nonce. In contrast, instead of using nonce,
the CREATE2 opcode facilitates the creation of contracts
with a deterministic address by using salt, which could be
arbitrarily defined in the transaction. This feature allows
DCWs to predict the address of the yet-to-be-deployed
fraud contract without even accessing the blockchain.
Consequently, DCWs could lure victims into transacting
with a ‘non-existent’ fraud contract [35]. At such a
juncture, discerning the malicious nature of the contract
becomes exceedingly challenging for the victims, as it is
yet to be deployed. To substantiate this hypothesis, we
observed that all 65,530 fraud contracts had victim
transactions that occurred prior to the actual deployment of
the fraud contract.

7. Related Work

7.1. Fraud Detection On Blockchain

Ponzi Scheme. Yu et al. [4] utilized graph convolutional
networks to detect Ponzi schemes using transactions,
whereas Zhang et al. [5] improved on the LightGBM
algorithm for better detection efficacy. Extracting bytecode
features [6] and leveraging text convolutional neural
networks [7] have also been proposed to identify
Ponzi-like characteristics in smart contracts. There are also
works using opcode compression for vulnerability
detection [8] and identifying static features within smart
contracts for Ponzi scheme classification [9]. Techniques
using opcode sequences [10], code analysis [11], and
enhanced convolutional neural networks [12], [13] have
also been implemented to identify Ponzi schemes.
Fraud And Phishing Detection. Beyond Ponzi schemes,
broader fraud detection on the blockchain is tackled
through various innovative approaches. Liu et al. [15]
utilized a Heterogeneous Information Network to model
smart contracts and apply graph Transformer networks to
detect abnormalities. Machine learning algorithms, such as
XGBoost and Random Forest, have been employed by
Ashfaq et al. [16] to classify Ethereum transactions and
detect anomalies like double-spending and Sybil attacks.
Furthermore, Hu et al. [17] explored deep learning models

to identify scams on a large scale by examining the
N-gram bytecode patterns of a smart contract. Notably, the
identification of fraud contracts acts as the input for CoCo,
enabling it to generate evidence that assists FBI agents in
obtaining legal authorization and implementing mitigation
strategies. The research community has also studied a
wide range of Phishing transactions [42]–[45]. Unlike
these existing studies, which treat the fraud contracts like a
blackbox and focus on examining/triggering transactions,
CoCo bridges the gap between the contract implementation
and on-chain transactions to produce forensic evidence.

7.2. Smart Contract Vulnerability

Luu et al. [22] were among the first to address the
security risks in smart contracts by identifying security
pitfalls. Symbolic analysis has been used frequently to
detect such vulnerabilities; Krupp and Rossow [23]
developed techniques to automatically exploit smart
contracts by analyzing bytecode. Similarly, Zeus [24], a
framework for the symbolic verification of smart contracts,
uses Constrained Horn Clauses to identify vulnerabilities,
an approach also adopted by others [25], [27]. With the
rising complexity of smart contracts, especially those
involving multiple contracts, Ma et al. [26] proposed an
inter-contract analysis tool, while others have focused on
state inconsistency bugs [28]. Online detection methods
have also been investigated, such as SODA [46], an online
detection framework for smart contracts.

Recent works have shifted toward leveraging machine
learning to enhance the detection process. Sendner et al.
[47] introduced ESCORT, a method employing deep
learning to identify different types of smart contract
vulnerabilities. There are also works utilizing dynamic
analysis [48], deep learning [49], and pre-training
techniques [50] to identify smart contract vulnerabilities.
Others have focused on static analysis rules tailored to
specific blockchain platforms, like VRust for Solana smart
contracts [51], or on defining critical paths to address fund
transfer vulnerabilities [52]. Moreover, combining expert
knowledge with graph neural networks has shown promise
in enhancing detection capabilities [53]. Another notable
approach is the analysis of confused deputy vulnerabilities
in Ethereum smart contracts [54], which highlights the
importance of understanding the security challenges in
contract interactions. Contributing to a different domain,
CoCo conducts forensic analysis on fraud contracts,
producing the evidence for FBI agents to obtain legal
authorization and execute mitigation strategies.
8. Discussion
Ethical Concerns. The data utilized in this analysis is
sourced exclusively from the public domain, specifically
Ethereum. This research centers on conducting forensic
investigation of fraud contracts, and it is important to
clarify that we do not engage in any exploitative activities.
Challenges of Symbolic Analysis. CoCo leverages
symbolic analysis, a technique adopted by top-tier



research [55]–[60]. While symbolic analysis often faces
the challenge of path explosion, our evaluation in §5
shows this to be a rare issue in smart contract analysis.
This is likely because smart contract execution involves a
cost, known as ‘gas,’ leading malicious actors to prefer
simpler contract designs.
ERC-20 & NFT. CoCo primarily focuses on the forensic
analysis of fraudulent activities involving the scam of
ETH. ERC-20 [61] and Non-Fungible Tokens (NFTs) [62]
have emerged as extensions built upon Ethereum. ERC-20
tokens provide a standardized protocol for fungible tokens,
ensuring consistency in token interactions. Non-Fungible
Tokens (NFTs), in contrast, represent unique digital assets,
each characterized by distinct metadata and individual
ownership records. Even though both token standards are
implemented through smart contracts, forensic analysis of
ERC-20 and NFT requires distinct approaches. In
particular, both transaction and program analysis offer
limited insight into the complex behaviors associated with
these tokens. While ETH transfers are directly recorded as
transactions, exchanges of ERC-20 tokens or activities like
NFT minting and ownership transfer are typically reflected
as internal state changes within the contracts themselves.
Generalizability of CoCo. The design principles of CoCo
are not tied to specific features of any blockchain (e.g.,
Ethereum). This makes CoCo portable to other blockchain
platforms. Specifically, since blockchain technology
mandates the public disclosure of all transactions, the
transaction forensics components of CoCo can be applied
across different blockchains. Additionally, the program
analysis components of CoCo can be easily extended for
use with any blockchain that supports smart contracts. For
instance, BNB Smart Chain (BSC) [63] is compatible with
EVM bytecode, enabling direct application of CoCo.
Similarly, Solana [64] employs Berkeley Packet Filter
(BPF) bytecode for its smart contracts. Porting CoCo for
Solana only requires a one-time effort to map the current
bytecode set used by CoCo to Solana’s bytecode set.

9. Conclusion

Applying CoCo to 157 Etherscan-flagged contracts [3],
our research identified 1,283,198 associated contracts
across 91 DCWs. These frauds have accrued 2,638,752
ETH ($2,089,504,682) in illicit profits, averaging 2.06
ETH ($1628.36) per contract. CoCo revealed that these
frauds date back to September 2017. Notably, our research
found that scammers tend to employ multiple fraud
contracts to distribute the risk, suggesting the efficacy of
current flagging mitigation strategies upon scammers. In
response, we are actively collaborating with Etherscan [3]
and the FBI [29] to take actions based on our findings.
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Appendix A.
Start Of Fraudulent Campaign

As highlighted in §2.2, FBI agents were notified with a
fraud contract C-98f804 associated with a scam message
on Telegram [31]. Further investigation into this message
led agents to uncover similar content on other platforms, as
shown in Figure 5 and Figure 6, reinforcing the message’s
fraudulent nature.1 Reply    
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0.005 ETH and get 600 SUB 
0.05 ETH and get 1,500 SUB 
0.5 ETH and get 3,000 SUB 
1 ETH and get 5,000 SUB 
sanjihovog je kanala , sad mene zanima Trebao bi neki wallet skinuti? Ali jos bitnije jeli scam ovo ili nije posto
san naletio na tweet od substratuma da nemaju trenutno nikakvih airdropova
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ma nisam proučavao. Obično niti ne ulazim u detalje, previše vremena bi potrošio. 
U pravilu, čim traže novce za airdrop preskačem i idem dalje. Možda je i scam, ne bih se iznenadio. Ima ih dosta. 
Ako traže da skinem neki njihov wallet, produžim dalje. Ne isplati se riskirati. 
S obzirom koliko novaca se kao nudi, lako moguće da je navlakuša i scam.
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Figure 5: Scammers post the fraudulent message on forum.
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Figure 6: Scammers post the fraudulent message on X.com.

Appendix B.
Collaboration With Investigators

Figure 7 presents our communication with the FBI [29].
We redacted the name of the agent but kept the domain
name for security and ethical considerations.

Appendix C.
Full Forms Of Abbreviations

Accounts on Ethereum (i.e., wallets and contracts) are
identified by 40-character hexadecimal strings known as
addresses, while transactions are distinguished by
64-character hexadecimal strings, called transaction hashes.
To improve the readability, we use abbreviations
comprising the last six characters of addresses and
transaction hashes in the paper. The full forms of these
abbreviations are presented in Table 6.

https://en.bitcoinwiki.org/wiki/ERC20
https://en.bitcoinwiki.org/wiki/ERC20
https://en.wikipedia.org/wiki/Non-fungible_token
https://en.wikipedia.org/wiki/Non-fungible_token
https://www.bnbchain.org/en/bnb-smart-chain
https://www.bnbchain.org/en/bnb-smart-chain
https://solana.com/


Good Afternoon Brendan,
 
Wednesday afternoon next week works for us. Let me know if that works for you all.
 
Thanks
 
Special Agent Christopher R. Maul
Complex Financial Crimes
FBI Atlanta
3000 Flowers Road South
Atlanta, GA 30341
Cell #: (703) 215-5561
Desk #: (770) 216-3481
 
From: Saltaformaggio, Brendan D <brendan@ece.gatech.edu>
Sent: Tuesday, December 5, 2023 1:18 PM
To: Maul, Christopher Rashaun (AT) (FBI) <CRMAUL@FBI.GOV>
Cc: Yao, Mingxuan <mingxuanyao@gatech.edu>
Subject: [EXTERNAL EMAIL] - Re: FBI Referral
 
Hi Chris,
 
Nice to talk to you. I am also looping in Mingxuan Yao (cc'ed). He is the lead researcher on this project.
 
We are free next Tuesday or Wednesday. Let me know if that works for your team.
 
We are in the coda building (https://maps.app.goo.gl/LMwZGLqfgrSekkBZ9) in Midtown Atlanta.
 
Feel free to call my cell any time: 504-452-4594
 
Best,
Brendan
 

From:  < @FBI.GOV>
Sent: Tuesday, December 5, 2023 10:50 AM
To: Saltaformaggio, Brendan D <brendan@ece.gatech.edu>
Subject: FBI Referral
 
Good Morning Brendan,
 
I received your contact information from a complaint you submitted involving fraudulent Ethereum smart contracts. I
would love to set up a meeting to discuss the information you and your team identified during your investigation.
Feel free to give me a call to discuss in detail and we can schedule a day in the next week to come to your office.
 
Thanks  
 
Special Agent 
Complex Financial Crimes
FBI Atlanta
3000 Flowers Road South
Atlanta
Cell #: 
Desk #: 
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Brendan
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Sent: Tuesday, December 5, 2023 10:50 AM
To: Saltaformaggio, Brendan D <brendan@ece.gatech.edu>
Subject: FBI Referral

Good Morning Brendan,

I received your contact information from a complaint you submitted involving fraudulent Ethereum smart contracts. I
would love to set up a meeting to discuss the information you and your team identified during your investigation.
Feel free to give me a call to discuss in detail and we can schedule a day in the next week to come to your office.

Thanks

Special Agent Christopher R. Maul
Complex Financial Crimes
FBI Atlanta
3000 Flowers Road South
Atlanta, GA 30341
Cell #: (703) 215-5561
Desk #: (770) 216-3481

Good Afternoon Brendan,
 
Wednesday afternoon next week works for us. Let me know if that works for you all.
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3000 Flowers Road South
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From: Saltaformaggio, Brendan D <brendan@ece.gatech.edu>
Sent: Tuesday, December 5, 2023 1:18 PM
To: Maul, Christopher Rashaun (AT) (FBI) <CRMAUL@FBI.GOV>
Cc: Yao, Mingxuan <mingxuanyao@gatech.edu>
Subject: [EXTERNAL EMAIL] - Re: FBI Referral
 
Hi Chris,
 
Nice to talk to you. I am also looping in Mingxuan Yao (cc'ed). He is the lead researcher on this project.
 
We are free next Tuesday or Wednesday. Let me know if that works for your team.
 
We are in the coda building (https://maps.app.goo.gl/LMwZGLqfgrSekkBZ9) in Midtown Atlanta.
 
Feel free to call my cell any time: 504-452-4594
 
Best,
Brendan
 

From: Christopher Maul <CRMAUL@FBI.GOV>
Sent: Tuesday, December 5, 2023 10:50 AM
To: Saltaformaggio, Brendan D <brendan@ece.gatech.edu>
Subject: FBI Referral
 
Good Morning Brendan,
 
I received your contact information from a complaint you submitted involving fraudulent Ethereum smart contracts. I
would love to set up a meeting to discuss the information you and your team identified during your investigation.
Feel free to give me a call to discuss in detail and we can schedule a day in the next week to come to your office.
 
Thanks  
 
Special Agent Christopher R. Maul
Complex Financial Crimes
FBI Atlanta
3000 Flowers Road South
Atlanta, GA 30341
Cell #: (703) 215-5561
Desk #: (770) 216-3481

Figure 7: Collaborating with FBI.

TABLE 6: MAP ABBREVIATION TO FULL FORMS.

Abbr Full Forms

Contract
C-98f804 0x70305b080efc49eb5dfb9bda78aea516c398f804
C-48d304 0x5BE1De8021cc883456FD11DC5CD3806dBc48D304
C-6113fB 0xf97Bd29b8eE6E246Eb57eEcf5D0E8486366113fB
C-Fd562c 0xefef14C36C1F2de2ca3772Ba9539B6A58cFd562c
C-2e14CC 0xcB3315A42E76b70D2f3e8E595a5d13855c2e14CC
C-789332 0xcf50193c27DF08423BFe813676541B2268789332
C-D986ae 0x8014FB4882b1f99a3E60AEce1d39400560D986ae
C-6786ae 0x8014ae6574CAcE1f2435a86d4ea0472f466786ae
C-2D3B2f 0x65a8135596AE13C0Dd5c17bA1059C61Bc42D3B2f
C-D3c82b 0xDD499857c8539bEF04477B52782bE6A9FbD3c82b
C-159624 0xCC326C1D41f64c5331bc7Ba555d75306C3159624
C-8f428e 0xA77db707916aDEff81042ca57656931CcD8f428e
C-805a29 0x5F856630adBC27c0F5bC1DE1961D4f0fB1805a29
C-078228 0x1bd913BBaDE46bF5AD8b1e5d117701fBEb078228
C-0E712A 0xc25ab34E7F3a1eb2C6a3a23DF851F351df0E712A
C-a5f260 0xEb411D5Df13AC7020992306e78955fb7CBa5f260
C-db7aFF 0xBCC6C0feF89b87a12773Db7a9a8ECBCCCcdb7aFF
C-18B228 0x95115419B09E8Cea70a9bdbCA3fEe8C5e118B228
C-57e2e8 0x890bcE348BAE449Df3783ba0E1C7eB82C557e2e8
C-4f99A8 0x6032D639E634E788FcE323B316E06d18194f99A8
C-a5CDE9 0x6574C0bF7F3D144F5837acC160773eC8f2a5CDE9
C-3D7D37 0x197e45d545F4DA0C3f15002222BcADDd9D3D7D37
C-70aae3 0x4a96e9b57a229d94c0c28950355A72Fa9e70aae3
C-CbEB9E 0xfdd46E0ea17622d70AdaE6535948776160CbEB9E
C-e18895 0x3cD6ef508c1c448e293075f1dE2ae96a49e18895
C-2C4691 0x5B9E8728E316bBEB692d22daaAB74F6cBF2C4691
C-36FFaE 0x131A99859a8bfa3251D899F0675607766736FFaE
C-1e3e4e 0xbf0c5d82748ed81b5794e59055725579911e3e4e
Wallet
W-521058 0x2E05A304d3040f1399c8C20D2a9F659AE7521058
W-bceE76 0x29203118cCbBF5277C1CEB49aF1333A91CbceE76
W-82f98B 0xd6E56a65f795Fd136406e668c0eB69360F82f98B
W-2499E7 0xA40b913D654D803b9833e9a699D5830f262499E7
W-b10f4B 0xF52426340e0548a8d58b970f2283e22c1bb10f4B
W-6629BA 0xD0E680D5141f6E61E953903736E3637a6E6629BA
W-2b0878 0xF7cC855E3BB2986729eC47c1B6f64e36aA2b0878
W-09739F 0x848a757656650c9950fb1Aed03eaC8A92209739F
W-223DcF 0xc2221f38dE2eB19125A5b77b5D82d5bFc7223DcF
W-187307 0x4005de995109895BE7Eac74346a62Db28b187307
W-3CD202 0x38c7eA86c8235b0CfCcFb91153259e85353CD202
W-297f83 0x7d3Bdf1b728386efDb9a3A0328a95D94b0297f83
W-15467A 0x7734aA368Df7bd09D2AbCBf925Cc92314A15467A
W-64EE46 0xfa32e18Cf5e9E96eDBa979f40DC55E465864EE46
W-1AB876 0xe3172Dc735B44893303e2fd22D1d3647271AB876
W-93abb5 0x9D31e30003f253563Ff108BC60B16Fdf2c93abb5
W-5FFDdc 0xd5e015739a8BEffF075C4eAA2013D27Df35FFDdc
W-13666c 0x058251232C086247cA91998472245D8Ae213666c
W-53C9dA 0x604Df452158e7ddF3E44338308EdC079a953C9dA
Transaction

T-8bbae5
0x58f6fb1d2440eb4d6d5ac64a152aa156d3850eff6b3-
56ab86904ac28758bbae5



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process, as detailed in
the call for papers.

D.1. Summary

This paper presents CoCo, an automated approach to
identify deceptive creator wallets (DCWs) through fraud
contracts to aid in identifying the stakeholders in a fraud
scheme rather than just individual wallets.

D.2. Scientific Contributions

• Creates a new tool to enable future science
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) This paper is well-written.
2) This paper presents an in-depth, real-world analysis of

experimental results with some interesting findings.
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