
COINDEF: A Comprehensive Code Injection Defense for the Electron Framework

Zheng Yang, Simon P. Chung, Jizhou Chen, Runze Zhang, Brendan Saltaformaggio, Wenke Lee
Georgia Institute of Technology

Abstract—The increasing popularity of cross-platform
frameworks like Electron underscores the appeal of using
familiar web technologies for desktop application
development. Electron fuses the web and native environments
into one single executable. However, this fusion creates
unique vulnerabilities and significantly expands the attack
surfaces for Electron applications, rendering traditional web
defenses ineffective, as they are not designed to operate
across both web and native contexts simultaneously. To
address these challenges, we propose COINDEF, a centralized
defense mechanism that enforces the structural integrity of
Abstract Syntax Trees (ASTs) with execution context.
COINDEF operates within the JavaScript engine, providing
rapid, tamper-proof, and comprehensive mitigation against
code injection attacks to Electron applications. COINDEF
employs hybrid profiling to collect AST structural profiles,
establishing a baseline of expected behavior. Then, COINDEF
enforces these profiles for code as it is interpreted at
runtime. In an evaluation of COINDEF on 20 representative
real-world applications, we demonstrate its effectiveness in
blocking exploits, incurring a 3.96% runtime overhead
during application startup and negligible overhead during
user interaction. Comparing COINDEF to state-of-the-art
defenses for Electron applications, we show that COINDEF
offers comprehensive protection against sophisticated code
injection attacks through DOM manipulations and dynamic
code execution.

1. Introduction

The increasing popularity of the Electron framework
for developing cross-platform applications highlights the
enduring allure of software paradigms that leverage
familiar web technologies [1]. However, this novel use of
web technologies outside of the sandboxed browser setting
also means vulnerabilities from web applications (e.g.,
cross-site scripting (XSS), prototype pollution, etc.) can
affect the underlying client machine, potentially resulting
in the remote execution of malicious code (RCE).

One such attack with real-world consequences is the
Water Labuu campaign discovered in October 2022 [2],
which spreads malicious messages through Meiqia, an
Electron-based chatting application used by over 400,000
companies for customer service. A simple click on the
malicious message injects malicious code into the app and
leads to the exploitation of CVE-2021-21220 [3], stealing
more than 300,000 US dollars worth of cryptocurrency.

Unfortunately, Meiqia is not the only one that is
vulnerable. Similar campaigns can be launched against
other high-profile apps like Slack, Discord, MSTeams,
potentially targeting any subsequently discovered
RCE [4]–[10] to execute malicious code of the attackers’
choice on millions of machines and devices.

Despite extensive research into defenses against XSS
for web applications [11]–[15] and RCE for native
environments such as NodeJS [16]–[18], little has been
done to address the root cause of such RCE attacks–code
injection–within Electron applications. These prior
solutions are effective within their respective runtime
environments (web or native), but they are not equipped to
handle the dual environments nature of Electron
applications, which fuse web and native environments.
This fusion introduces unique vulnerabilities and a broader
attack surface [19], rendering existing defenses ineffective
for protecting both environments simultaneously. Although
recent studies have examined the attack surfaces in
Electron applications and proposed mitigation [20]–[22],
none have addressed the underlying code injection issues
driving these security risks.

In our pursuit of a comprehensive and practical
defense, we investigated the underlying cause of code
injection attacks in Electron applications, drawing
inspiration from Su and Wasserman’s work [23], which
observed that successful injections must change the
intended syntactic structure of a program. Our research
builds on this foundational insight and reveals two key
observations specific to the Electron application
ecosystem: 1) A code injection attack will ultimately
change the semantics of the original code, reflected by a
structurally different abstract syntax tree (AST), resulting
in a modified or new AST structure. 2) The JavaScript
engine of Electron is the choke point to provide
comprehensive protection against code injection for the
web and native environments simultaneously.
Consequently, we turned our attention to preserving AST
structural integrity in the JavaScript interpreter so that we
can prevent code injection by enforcing the AST structural
integrity with contextual information.

To this end, we propose COINDEF, a comprehensive
Code Injection Defense for the Electron Framework.
COINDEF works in the JavaScript interpreter (i.e., V8) of
Electron applications to build AST profiles and enforce
them at runtime. COINDEF works in two phases. In the
learning phase, COINDEF identifies all JavaScript code
contained in the application to be protected and generates

3127

2025 IEEE Symposium on Security and Privacy (SP)

© 2025, Zheng Yang. Under license to IEEE.
DOI 10.1109/SP61157.2025.00195

Main Process

embed

Renderer Processes

Launch
User Code

Dependencies
Preload
Scripts

V8

Blink

V8

NodeJS Sensitive APIs
(e.g., eval, exec)

BrowserWindow
SubFramesMain

(IPC, ContextBridge)

User Code

Dependencies

Figure 1: The Process Models of Electron.

the expected AST profiles of all the code with the
execution context using both static profiling and dynamic
profiling. In the enforcing phase, COINDEF validates every
JavaScript code that is being interpreted by comparing the
observed AST against those extracted in the learning
phase. Furthermore, COINDEF leverages predefined
security policies (security-first or usability-first) at runtime
to accommodate unseen AST profiles that are not profiled
in the learning phase. As working in the choke point in the
execution pipeline for all code, COINDEF enables
comprehensive mitigation against maliciously injected
code. COINDEF also incurs negligible runtime overhead
by taking a free ride (precomputing AST profiles) when
the parser is parsing the source code. As such, code only
needs to be validated once in its lifetime, incurring no
runtime overhead during user interactions.

We evaluated COINDEF on 20 representative
real-world Electron applications with code injection and
RCE vulnerabilities, listed in Tab. 2. The applications we
tested include widely used ones like Slack and MSTeams,
as well as popular open-source projects such as boostnote
and joplin. We first collected the AST profiles as the
expected behavior model for each application using the
approach discussed in § 3.4. After completing the learning
phase, we proceeded to carry out 20 exploits using
payloads previously reported as successful. The evaluation
results show that COINDEF effectively blocked all the
exploits. Furthermore, COINDEF only incurred, on
average, a 3.96% one time overhead at startup time (§ 4.2)
and negligible (Tab. 5) over the remaining lifetime of the
Electron application. Additionally, we conducted a
comparison with state-of-the-art solutions for Electron
applications (§ 4.3) to highlight the comprehensive
protection COINDEF provides and discussed where prior
solutions failed.

We release the source code of COINDEF and instructions
to use it to support further research and development on
https://github.com/ian7yang/CoInDef.

2. Background & Challenges

Process Models. Fig. 1 presents the architectural overview
of the Electron framework. Conceptually, the Electron
framework consists of two processes. The main process
assumes responsibility for native API access with the
support of NodeJS. The renderer process focuses on

rendering the UI and managing user interactions backed up
by Blink, Chromium’s renderer engine. Upon initializing
the main process, Electron’s main process creates a
BrowserWindow object. This window object launches
an HTML page as the UI that runs in the renderer process.
Notably, the renderer process relies on Blink and thus
inherits the security mechanisms of Chromium, including
site isolation, which prevents direct communication
between different web frames [24]. To establish
communication between the main and the renderer
processes, Electron introduces preload scripts, which are
bound to the renderer process and provide
BrowserWindow objects with access to sensitive APIs
(e.g., shell) defined in those preload scripts through
Inter-process Communication (IPC). Additionally, Electron
offers developers the NodeIntegration option to
directly integrate NodeJS’s context into the renderer
processes, facilitating fast development.

SubFrames. Chatting applications like Discord provide
“In-App View” features to allow their users to directly
view external resources (e.g., watch a YouTube video) in
the main application window. However, these applications
do not load arbitrary external content. Instead, they have
clearly defined the Content Security Policy (CSP) to only
load trusted resources and render them in the isolated
iframe, which we annotated as SubFrames in Fig. 1.
The JavaScript code running in the SubFrames is
isolated from the main application to prevent it from
tampering with the main application. Since these resources
are only presented at runtime, they are unknown to static
analysis tools and may not be there when being
dynamically profiled.

The shared context between the main and the renderer
processes provides UI access to the native OS resources.
Meanwhile, it opens security holes for Electron
applications: code injection in the UI can springboard into
the main process and achieve RCE by either directly
invoking those APIs through shared context enabled by
misconfigured contextIsolation [5] or crafting a
series of sophisticated payload to abuse the correctly
exposed APIs [7]. contextIsolation is the critical
security feature Electron creates to ensure the JavaScript
code running in the UI’s process cannot arbitrarily access
the powerful NodeJS context running in the main process.
With context isolation enabled, Electron creates
contextBridge to expose functions connected to native
OS resources to the UI for desktop experience.
Unfortunately, these security suggestions are not well
followed by application developers [20], [22]. Even worse,
attackers have found ways to bypass these restrictions in
some scenarios [25], [26].

In the rest of the paper, we use MainProcess to
represent the main process, BrowserWindow to represent
the top frame in the renderer process, and SubFrames to
represent non-top frames in the renderer process.

3128

Discord

Remote Attacker

a link to a
trusted website

Main Process
SubFrame

(CSP allowed)

Execution Context Shared

BrowserWindow
(attacker controlled)

XSS

Victim

interacts

nodeIntegration: false,
contextIsolation: false,

1

2

3

4 cmd

Renderer Processes

Native Modules

DiscordNative execa

Figure 2: A Real-world Motivating Example.

2.1. A Motivating Example

As shown in Fig. 2, a real attack scenario [5] begins
by sending a website link to a potential victim in step 1 .
Although Discord has defined CSP to prevent code injection,
it cannot guarantee all its partners follow the same security
practices. As a result, there is still a possibility for trusted
partners with insufficient security practices to be exploited
and serve as an open gate for the entire system.

In this example, one of the trusted partner websites,
sketchfab.com, has a cross-site scripting (XSS)
vulnerability when rendering annotations for 3D models.
The attacker takes advantage of this feature and sends the
victim a well-crafted 3D model containing malicious
JavaScript code. Then, the XSS bug gets triggered as the
victim interacts with the 3D model isolated in a
SubFrame in step 2 using the “In-App View” feature.
Specifically, the XSS payload successfully navigates the
parent frame (the top window or the content of the
BrowserWindow) to an attacker-controlled webpage in
step 3 by exploiting CVE-2020-15174 [27], which is
called a client-side-redirect attack. Since this
attacker-controlled webpage is now in the context of the
top window, it gains access to Discord’s
BrowserWindow context, escaping from the isolated
SubFrame. Meanwhile, due to the inadequate setting
(contextIsolation: false) of isolation between
the main and the renderer processes, the UI can access the
sensitive NodeJS APIs (e.g., fs, child_process, etc.)
even in the renderer process. This misconfiguration gives
the attacker further opportunities to compromise the main
process. Consequently, the attacker overwrites two
JavaScript’s built-in methods (i.e., prototype pollution
attacks) to successfully invoke a privileged NodeJS
module DiscordNative and achieves remote code
execution through execa in step 4 .

2.2. Challenges

If the victim is using the web version of Discord, the
attack would stop in step 3 because the user has been
navigated away from discord.com. There would be no
subsequent attacks at all. Unfortunately, in the setting of
Discord’s Electron application, because of the shared
context (APIs) between the main and the renderer
processes, the initial code injection attack evolves into a
more severe RCE, causing more harm to the victim. If we

just focus on defending against step 3 , attackers can
always find alternatives to trigger step 4 , rendering the
single-point defense ineffective. Based on this observation
and the requirements of users, we conclude three
significant challenges to overcome to mitigate code
injection attacks in Electron applications:
C1. Comprehensive Protection. An effective protective
system for Electron applications should address all
potential code injection scenarios, covering prevalent web
attack vectors like XSS, prototype pollution, and
client-side-redirect. This protection must apply across all
layers, including first-party code, third-party libraries, and
legitimate remote code that Electron applications might
load. Ensuring such comprehensive coverage also requires
an adaptable approach to usability, preserving core
functionality for users. By implementing flexible modes
such as security-first for heightened protection and
usability-first for greater functionality, the system can
accommodate different user priorities, achieving an
optimal balance between security and usability.
C2. Negligible Runtime Overhead. The protective system
must operate with minimal runtime overhead to avoid any
noticeable lag that could lead users to disable the defense.
C3. Tamper-Proofing. To ensure robust security, the
protective system should be tamper-resistant, meaning it
must be deployed within a privileged layer that is
inaccessible to remote attackers, thereby preventing any
unauthorized modifications.

3. System Design

3.1. Threat Model & Assumptions

We design COINDEF to prevent code injection attacks
in a comprehensive and fast manner for Electron
applications in the production environment. It defends
against remote attackers attempting to inject malicious
payloads into Electron applications and safeguards users
who unknowingly copy and paste such payloads. These
attacks exploit vulnerabilities in Electron applications and
their dependencies, allowing remote attackers to control
the victim’s device or steal their digital assets. Therefore,
applications that deliberately accept and execute arbitrary
user inputs are out of scope. Importantly, in the context of
Electron applications, the application, its dependencies,
and vendors are not intentionally malicious, but rather
vulnerable. Therefore, issues related to the software supply
chain attacks fall outside our scope. Moreover, COINDEF
does not require the code of Electron applications to be
human-readable. In other words, COINDEF takes the code
released in the production build as is, which is usually
minified, bundled, or obfuscated.

3.2. Design Overview

Fig. 3 illustrates the high-level work flow of COINDEF.
COINDEF takes in an Electron application in the learning

3129

Application

Security
Policies

AST Profile
Generator

Learned
AST Profiles

Runtime
AST Profiles

Runtime
Enforcer

Inputs Learning Enforcing

Figure 3: COINDEF Design Overview.

phase to construct its AST profiles for enforcement. In the
enforcing phase, COINDEF validates the AST profiles
generated at runtime against the learned ones. Unlearned
AST profiles encountered at runtime are handled according
to predefined security policies (detailed in § 3.5.1) based
on the protection mode: security-first or usability-first. To
overcome the challenges outlined in § 2.2, COINDEF
operates in the language interpreter, a central place where
all JavaScript code (i.e., both web and native) must pass
through. This placement not only ensures comprehensive
protection (C1) but also is tamper-proof (C3) from remote
attackers since COINDEF has higher privileges than the
JavaScript code for residing in the interpreter. Furthermore,
COINDEF takes advantage of the existing JavaScript code
parsing process to get an almost free ride for constructing
AST profiles, incurring negligible runtime overhead (C2).

3.3. AST Profile

A good AST profile should only block maliciously
injected code while allowing legitimate ones. In the
context of code injection, an AST profile in COINDEF is
an abstract representation of the source code that is either
existing legitimate static code or dynamically generated
with legitimate inputs from remote sources (e.g., user
inputs, network responses) given its running context. The
naive code-signing method can guarantee the legitimacy of
the static code but cannot accommodate the dynamically
generated code that can change the signature frequently.
To achieve this goal, COINDEF builds AST profiles by
constructing context-aware AST structural signatures.

3.3.1. AST Structural Signature. To generate such AST
structures for any code, whether hard-coded (i.e., static) or
dynamically generated (i.e., dynamic), COINDEF extracts
each AST node’s type, value, and position when the
interpreter parses the source code. To allow varying
legitimate user inputs for dynamic code, COINDEF

TABLE 1: Data Nodes for AST Structural Signature.

Node Type Parent Type Data Type

literal any string or number
name property string or number
key property string or number

value property object or array literal,
string, or number

variable proxy not (call or assign or new) string

replaces the concrete values with placeholders for certain
data nodes. Tab. 1 lists all types of data nodes in an AST
including the value of a literal, name, or key node which
can only be a string or a number; the value of a value
node under a property parent can be an object literal, an
array literal, a string, or a number. By design, none of
these nodes should introduce function definitions or
invocations in an AST. If controlled by an attacker, a
variable proxy (i.e., the variable’s identifier) can be
pointed to a function or an object. Therefore, COINDEF
only allows the value to change when the variable proxy
node is not under a call, new, or assign expression.

Such an AST structural signature prevents the
(malicious) inputs from defining a new function,
overwriting the prototype functions, calling existing
functions, or executing code directly, which simply
searching for function-related operations cannot achieve.
For instance, given JavaScript code that is vulnerable to
code injection attacks: eval(`cl.${color}()`), the
dynamic input is color. The expected legitimate color
can be a literal (e.g., red). When eval executes, an AST
is generated as shown in Fig. 4a. However, attackers can
change the value of color from red()to
red();exec(’cmd’)//, resulting in arbitrary code
execution and a different AST structure as highlighted in
Fig. 4b. By checking the code’s AST structural signature
in Fig. 4b with the baseline in Fig. 4a, COINDEF can
detect and reject the malicious code, exec(’cmd’).
Since COINDEF does not consider node’s values for
property.name, any legitimate, expected inputs to
color (e.g., yellow, green) can pass the validation.

Detecting only function invocations in the AST is
insufficient because injected code can execute directly
without invoking existing functions. To address this, our
AST structural signature captures both function-related
operations and direct code execution paths. This
comprehensive approach ensures that even non-invoked,
standalone code injections are detected, enhancing the
robustness of our protection by accounting for all possible
injection vectors within the AST structure.

3.3.2. Execution Context Annotation. The execution
context is essential for Electron applications to distinguish
the privileges of web and native code and generate
finer-grained AST profiles for mitigating mimicry
attacks [29]. For example, suppose the attackers can
leverage Electron’s vulnerabilities (e.g.,
CVE-2022-29247 [30]) to access the native environment

3130

cl.red();

Type:call

Type:var
Value:cl

Type:property

Type:name
Value:red

func root

(a) Legitimate Code.

(a): [t_call, t_property, t_var,
v_cl, t_name, v_placeholder]

(b): [t_call, t_property, t_var,
v_cl, t_name, v_placeholder,
t_call, t_var, v_exec, t_literal,
v_placeholder]

Type:call

Type:var
Value:exec

Type:literal
Value:cmd

Type:call

Type:var
Value:cl

Type:name
Value:red

cl.red();exec('cmd')//();

func root

Type:property

(b) Malicious Code.

Figure 4: AST Structural Signatures of Legitimate
and Malicious Code. An example taken from
eval(cl.‘${color}()‘) [28] shows that code
injection alters the AST structural signature.

through the web layer. In that case, they can directly
import NodeJS libraries as what has been defined in the
native code to pass the AST structural signature validation.
Based on the least-privilege principle, COINDEF isolates
the AST profiles based on their running processes (i.e.,
MainProcess, BrowserWindow, and SubFrames)
and annotates each AST profile with the process context
and code context, including the caller information and
callsite location if it is an eval-like call, exemplified in
Fig. 5. To facilitate fast enforcement, COINDEF also
divides the AST profiles into two categories, static and
dynamic, per process.
Static Profile. COINDEF considers an AST profile static
when the interpreter interprets a static script file and
functions defined in the script file. For instance, when
Electron renders an HTML page, the HTML parser
invokes V8 to compile code defined in <script
src=‘‘A.js’’>. Currently, the requester is the HTML
parser; therefore, static profiles have no execution context
other than the running process. Due to the lazy
compilation policy1, not all JavaScript code in a script file
is interpreted immediately. That is, some functions, if not
invoked immediately, are only parsed and compiled when
other code invokes them. Specifically, while parsing the
source code of a script, the parser will skip some functions
that are not immediately invoked and remember their
names and scopes. When those skipped functions are
invoked, the parser will parse the function body to
generate bytecode for them. At this time, the requester is a

1. https://v8.dev/blog/preparser

Runtime
Context

Annotation

Type:call

Type:var
Value: cl

Type:property

Type:name
Value: red

AST Structure AST Profile
Process: MainProcess
Caller: r16:c9@index.js
Eval: true
Type: dynamic
Callsite: 118
URL: NA
AST:[t_call, t_property, t_var,
v_cl, t_name, v_placeholder]

Figure 5: An AST Profile. COINDEF constructs an AST
profile by extracting the AST structural signature annotated
with runtime context for eval(cl.‘${color}()‘)
where color is “red”.

JavaScript function. However, these functions are defined
in the static script file and are not changeable. Therefore,
COINDEF still considers AST profiles of such lazily
compiled functions static after checking their original
script with local files.
Dynamic Profile. COINDEF considers an AST profile
dynamic when the code comes from dynamic code
generation APIs (e.g., EventHandler, eval,
document.write), obtained from the code injection
sinks defined in CodeQL [31]. Beyond the code injection
sinks, COINDEF also considers the scenario where one
script includes or imports another. For example, when
script A includes script B by appending another
<script> tag or runs eval-like or importScript
APIs to execute code dynamically, COINDEF considers the
AST profile of Script B or the dynamically evaluated code
as a dynamic profile. Note that dynamically generated
code also complies with the lazy compilation policy.
COINDEF uses the same method to assign types to
functions defined in dynamically generated code.

Fig. 5 shows that an eval-like API is invoked at the
118th character of a caller function defined at row 16,
column 9 in the file “index.js.” Since this code is
dynamically generated, the profile type is “dynamic” and
the URL is marked as “N/A.” Because property.name
is a data node, the value is marked as a placeholder.

3.4. AST Profile Collection

Modeling an Electron application can be done either
statically or dynamically. However, the accuracy of static
analysis decreases significantly on bundled, minified, or
obfuscated JavaScript code, which is often the code format
of Electron applications for production release. Moreover,
static analysis cannot provide an accurate execution
context in the enforcing stage. For example, without
running the code, there is no way to be sure what process
it will be running in. Therefore, we opted for a hybrid
learning approach to build AST profiles of an application
for COINDEF. Static profiling guarantees the completeness
of the application, while dynamic profiling complements it
by annotating the contextual information and recording
any dynamic code execution at runtime.

COINDEF collects AST profiles at the function level to
preserve AST structural integrity within the execution

3131

context. This choice aligns with the JavaScript interpreter’s
compilation process, where functions serve as the
fundamental units for execution. In line with this design,
COINDEF enforces policies by letting the interpreter return
a noop function when an AST profile is determined
invalid; otherwise, it returns the original function object.
With this function-level granularity, COINDEF learns static
profiles PS through static profiling (S) and dynamic
profiles PD through dynamic profiling (D) for an Electron
application (A), which together is denoted as
PA = PS ∪ PD.

Static Profiling. COINDEF customizes D82, a shell
interface to V8, to exclusively invoke V8’s parser and
generate AST structural signatures. This customization
disables the lazy compilation described in § 3.3.2, forcing
the parser to build the AST structural signature for every
JavaScript function defined in the local files. This enables
static profiling to provide COINDEF with a comprehensive
model of the application. Specifically, COINDEF obtains
PS as:

PS = {pi,j = G(i, j)|∀Fi ∈ A,∀fj ∈ Fi}

where PS is the set of all AST structural signatures
collected from every JavaScript function in every file of A
and G is the AST structural signature generation
procedure. Fi is a JavaScript file contained in A’s
installation package, and fj is a JavaScript function
defined in Fi. i is the URL (e.g., file://path) of a
JavaScript file and j is the location (i.e., row and column)
of a JavaScript function. During dynamic profiling, pi,j is
annotated with runtime context based on i. It is important
to note that PS is a complete set of all JavaScript
functions defined in A.

Dynamic Profiling. COINDEF comprehensively exercises
each application to supplement the static profiles (PS)
using a semi-automated approach that simulates user
interactions, similar to other state-of-the-art
techniques [20], [32], [33]. This approach begins with a
crawler that systematically interacts with the application’s
UI, clicking on buttons and menus and typing text. To
improve the performance of this approach by covering
more complex features, we supplement it with manual
exercises based on the application user manuals. If
available, we also employ end-to-end test cases to simulate
user interactions and trigger features, ensuring we cover all
relevant functionalities. Given a dynamic code trigger
action T in such a dynamic profiling procedure, COINDEF
obtains:

PD = {pi,j = G(i, j)|Cj ∈ Fi, Fi ∈ A, T (i, j) is triggered}

where G is the AST structural signature generation
procedure and Cj denotes dynamic code execution APIs
within the JavaScript file Fi, which are discovered during
static profiling.

2. https://v8.dev/docs/d8

Algorithm 1: AST Profile Enforcement.
Data: Current Runtime AST Profile r, Learned

AST Profile P , Security Policies S
Result: Whether to generate the function object

1 begin
// r is exemplified in Fig. 5.

2 if r.type == static then
3 PS ← a nested hash map keyed by url,

callsite for r.process;
4 p← PS .find(r.url, r.callsite);
5 return p.validate(r.ast);
6 end
7 PD ← a nested hash map keyed by url, caller,

callsite for r.process ;
8 ps← PD.find(r.url, r.caller, r.callsite);
9 if ps ̸= ∅ and ps.validate(r.ast) then

10 return true ;
11 end

// security policy for other cases.

// local or remote dataflow scope of r.

12 scope← localDataFlow(r) ;
// empty-, cross- or same-origin

13 origin← originCheck(r.url) ;
// obtained from hybrid profiling.

14 allowedOrigins← S.allowedOrigins ;
15 if scope == local then
16 return true;
17 end
18 if r.process == MainProcess then
19 return false;
20 end
21 if r.process == BrowserWindow then
22 if origin != same then
23 return false;
24 end

// S.SameOriginInBrowser is false by

default.

25 return S.SameOriginInBrowser;
26 end
27 if r.process == SubFrames then

// S.SubFrame is false by default.

28 if not S.SubFrame then
29 return false;
30 end
31 fOrigin← frameOrigin(r.caller);
32 return fOrigin ∈ allowedOrigins;
33 end
34 end

3.5. Runtime Enforcement

In the enforcing phase, COINDEF validates AST profiles
generated at runtime (R = RD + RS , where RD and RS

are dynamic and static AST profiles generated at runtime)
against those learned in the learning phase (P = PD +PS).
Any unlearned profiles, defined as U = R−P , are handled

3132

according to predefined security policies. Specifically,

U = (RD +RS)− (PD + PS) = (RD − PD) + (RS − PS)

Since PS is a complete set of JavaScript functions in A,
RS − PS = ∅, concluding U = RD − PD. This unlearned
set (positives) U includes true positives caused by attacks,
denoted as T , and false positives caused by unlearned
features, denoted as F . The goal of the enforcement is to
block T and accommodate F with best-effort under the
premise of security-first following security policies.

As outlined in Alg. 1, the enforcer takes in as the
current runtime AST profile r and the learned AST
profiles P . If r is a static profile, COINDEF simply checks
it against PS by its URL and callsite (Ln. 2-Ln. 6). When
r is a dynamic profile, COINDEF tries to find a match in
PD based on its URL, caller, and callsite. If COINDEF can
find the learned AST profiles for the given execution
context, it lets r proceed as long as R.ast is validated
(Ln. 7-Ln. 11). Otherwise, COINDEF applies the
predefined security policies on r to determine its security
impact and proceed accordingly (Ln. 12-Ln. 33).

3.5.1. Security Policies for Unlearned AST Profiles. We
define the security policies for COINDEF based on
Electron’s existing security model and best practices.
These policies focus on assessing the data flow for
imported dynamic code, the execution context in which
this code is intended to run, and the security origins of
remote resources. Additionally, COINDEF employs two
working modes: security-first and usability-first to balance
security and usability.

First, COINDEF performs a data flow analysis on r along
its call stack trace to determine whether its source code
consists only of locally defined variables. For instance, a
network response is considered a remote variable, as it is not
defined within the local scope, whereas a hard-coded string
is defined locally. Based on this analysis, COINDEF assigns
r a scope designation of local or remote (Ln. 12). If r
is confirmed to have a local scope, meaning the source
code is concatenated with hard-coded strings intended by
developers, COINDEF permits r to proceed regardless of
the running process (Ln. 15-Ln. 17).

Next, COINDEF checks the security origin of r,
assigning it one of three values: same, cross, or empty
(Ln. 13), where empty indicates that the dynamic code is
generated through eval or Function. Simultaneously,
COINDEF loads allowed security origins as defined in the
application, obtained through the hybrid profiling process
(Ln. 14). COINDEF then examines the process in which r
is intended to run to determine its privilege level. If r is in
the MainProcess process, COINDEF rejects it based on
a zero-trust security policy (Ln. 18-Ln. 20). If r is in the
BrowserWindow process and its security origin differs
from that of BrowserWindow, COINDEF also rejects it.
If the security origin matches, COINDEF consults a
user-defined property (i.e., SameOriginInBrowser) to
decide whether to permit same-origin content in
BrowserWindow, defaulting to false (Ln. 21-Ln. 26).

For SubFrames, COINDEF denies r if the user has
disabled SubFrames, which is disabled by default;
otherwise, COINDEF allows r only if its security origin
matches one of the allowed security origins
(Ln. 27-Ln. 33).

3.6. Security Analysis

Now, we formalize the security analysis as follows.
Definitions.

Tmodel: an AST representation of the program execution
learned in the profiling phase.
Truntime: an AST resulting from runtime input (e.g., user
input, dynamic code) in the enforcing phase.
V: the set of Tmodel learned from the whole program, and
Tmodel ∈ V .
C: the execution context of a Tmodel at a given program
point, and Tmodel ∈ VC ,VC ⊆ V .
DataNode ⊂ T : the set of leaf nodes representing data
values (e.g., string literal) expected to vary at runtime.
ExecNode ⊂ T : the set of internal nodes representing
executable logic (e.g., call expression).
IntermediateNode ⊂ T : the set of internal nodes
representing expressions and statements (e.g., block
statement).
Children(n): each node n ∈ IntermediateNode has a
sequence of children forming a subtree, denoted by
Children(n) = [n1, n2, . . . , nk].

AST Structural Signature Enforcement. COINDEF
enforces the AST structural signature by the function:

Match(Tmodel, Truntime) =

k∧
i=1

match(mi, ri)

where COINDEF requires that ∀mi ∈ Tmodel, ri ∈ Truntime,
match(mi, ri) = true. We denote the type of a node n ∈
T as:

type(n) =

 data if n ∈ DataNodes
exec if n ∈ ExecNodes
intermediate otherwise

∀mi ∈ Tmodel, ri ∈ Truntime, the value of match(mi, ri)
function is set to the following conditions:

1) Type mismatch is disallowed:

type(mi) ̸= type(ri)⇒ match = false

2) Data nodes must match in type:{
type(mi) = data
type(ri) = data

⇒ match = true

3) Exec nodes must match exactly:{
type(mi) = exec
type(ri) = exec

⇒ match = (mi == ri)

3133

4) Intermediate nodes must match recursively on their
children:

type(mi) = intermediate

children(mi) = [mi1 ,mi2 , . . . ,mik]

type(ri) = intermediate

children(ri) = [ri1 , ri2 , . . . , rik]

⇒ match(mi, ri) =

k∧
j=1

match(mij , rij)

Execution Context Enforcement. COINDEF enforces that
any runtime AST must conform to the allowed structure for
its execution context:

∀ Truntime,∃ Tmodel ∈ VC
such that Match(Tmodel, Truntime) = true at Context C.

Consider a code injection gadget on the DOM,
element.appendChild(user_inputs). Let U be
the user_inputs. If COINDEF observes only non-script
DOM nodes from U during the learning phase, COINDEF
obtains VC = ∅, where C is the execution context of this
API call. Then, COINDEF will block any injected scripts
since ¬(∃ Umodel ∈ VC). If U contains script elements in
the learning phase, then Umodel ∈ VC . Enforcement then
permits only structurally consistent ASTs with variability
restricted to data leaf nodes:

∃ Umodel ∈ VC ∧ Match(Umodel,Uruntime)

Thus, the attacker’s freedom is limited to modifying literal
values (e.g., strings, constants) without the ability to define,
modify, or invoke arbitrary logic. Any injected payload that
deviates from the learned script structure will be blocked
since:

Match(Umodel,Uruntime) = false at Context C.

For cases where input validation cannot be definitively
resolved–due to incomplete learning, ambiguous context,
or mixed data types–COINDEF defers to a predefined set
of security policies (Alg. 1). These policies combine static
and dynamic analyses, such as local data flow inspection
and runtime execution context profiling, to maintain
security guarantees while supporting usability.

3.7. Implementation

As illustrated in Fig. 6, COINDEF integrates
instrumentation hooks into V8’s interpreter to gather AST
node information, modeling both static and dynamic code
behaviors.

When code is processed, the language parser tokenizes
it and constructs two objects: script_info and
parser_info. These objects contain metadata about the
script, including the AST, source location, text range, and
the origin of the code (static or dynamic). Before bytecode
generation begins, COINDEF collects contextual

AstVisitor

code parser

script_info

call stack

parser_info

Hooked

Hooked

caller
is_eval,
location,
source

AST

extract node type,
value, and position

Interpreter

AST
Profile

Code
Context

Process
Context

AST
Structure

Figure 6: AST Profile Hooks Implementation.

information by examining the JavaScript stack frames
provided by V8, selecting the top frame as the caller. It
extracts the dynamic code’s location if sourced from
eval-like APIs to establish the code context. During
bytecode generation, COINDEF hooks into the base
AstVisitor functions to extract node type, value, and
position within the AST. Note that COINDEF does not
profile internal JavaScript functions from NodeJS and
Electron, as these are loaded before the user program and
are immutable. To annotate processes, COINDEF utilizes
hooks in Electron’s web frame delegates. V8’s Isolate
represents isolated instances of the V8 engine, with the
main process running NodeJS’s JavaScript context and
browser windows running standard JavaScript with
additional Electron APIs. By hooking into Electron,
COINDEF identifies the process creating the Isolate
and annotates the process context accordingly.

The modifications for AST profile generation and
enforcement are minimal, comprising fewer than 150 lines
of code in V8 and an additional 500+ lines in two
self-contained C++ files for logging and validation.

4. Evaluation

To evaluate COINDEF ’s effectiveness and practicability
in protecting users from code injection attacks and whether
it effectively addresses the challenges presented in §2.2, we
address the following research questions:
RQ1: How effectively can COINDEF protect users from

code injection attacks and the subsequent RCE?
RQ2: How do FP and FN impact user experience?
RQ3: What is the runtime overhead?
RQ4: How comprehensive is COINDEF compared with the

SOTA tools?
To answer these research questions, we evaluate COINDEF
on 20 diverse applications that are vulnerable to code
injection and RCE, using their real-world exploits. These
applications are selected for their broad representation
across software categories, scales, types of vulnerabilities,
and use cases. We source them from the GitHub Advisory
Database [41], articles, and technical blogs [4], [5], [7],
[8], [34].

3134

TABLE 2: A Diverse Set of Applications Vulnerable to Code Injection and RCE Attacks.

Application Vulnerable
Version

Electron
Version Line of Code GitHub Stars

Reference Injection Description Attack Vectors

1 MSTeams v1.4.00.4855 v8.5.5 187,295 N/A [7] a message to achieve template injection attacks TI, S-XSS, RCE
2 Slack v4.3.2 v7.1.9 153 (minified) N/A [4] an embedded frame opening a malicious webpage CSR, RCE
3 Discord v0.0.14 v11.4.2 10,932 N/A [5] a embedded frame opening a malicious webpage CSR, PP, RCE
4 VSCode v1.63.1 v11.2.1 3,114 (minified) 147k [34] a local file exploiting markdown preview MP, RCE
5 GraSSHopper v1.1.7 v12.0.6 71 (minified) N/A [21] a text rendered as HTML in a popup window D-XSS, RCE
6 ARDM v1.4.9 v11.4.9 11,271 25.8k [21] a text rendered as HTML S-XSS, RCE
7 Joplin v2.9.12 v19.0.10 172,199 36.2k [35] the language indicator for the markdown code format MP, RCE
8 Boostnote v0.22.0 v12.0.14 103,203 20.6k [21] code rendered as HTML for the markdown code format MP, RCE
9 Altair-graphql v4.0.11 v14.0.1 1,804 4.7k [21] query description rendered as HTML S-XSS, RCE
10 Appium-desktop v1.22.0 v7.1.2 133 (minified) 4.5k [36] incoming http request reflected as HTML R-XSS, RCE
11 Simplenote v2.9.0 v9.1.0 20,615 4.4k [10] markdown file not being properly sanitized MP, RCE
12 BlockBench v3.9.3 v13.1.2 49,280 2.1k [21] a filename rendered as HTML D-XSS, RCE
13 electron-crud v2.8.0 v10.0.0 1,168 1.5k [21] database records rendered as HTML S-XSS, RCE
14 arc-electron v16.0.1 v13.1.1 9,971 1.3k [9] HTTP header rendered as HTML S-XSS, RCE
15 vmd v1.34.0 v3.0.9 1,976 1.2k [37] markdown file not being properly sanitized MP, RCE
16 antares-sql v0.5.6 v14.0.1 256,525 1.1k [21] database table names rendered as HTML S-XSS, RCE
17 Markdownify v1.4.1 v7.2.4 10,337 868 [38] markdown file not being properly sanitized MP, RCE
18 Poddycast v0.8.0 v11.2.1 2,395 160 [39] bookmark rendered as HTML S-XSS, RCE
19 OhHai Browser v3.4 v8.2.5 2,736 52 [40] bookmark rendered as HTML S-XSS, RCE
20 Jukeboks v2.2.2 v11.2.3 1,360 23 [21] filename rendered as HTML D-XSS, RCE

Attack Vectors – TI: Template Injection, MP: Markdown Preview, CSR: client-side-redirect, PP: Prototype Pollution, R-XSS: Reflected XSS, D-XSS: DOM-Based XSS, S-XSS: Stored XSS.
N/A in GitHub Stars means they are not open-sourced.

4.1. Effectiveness

To address RQ1 and RQ2, we evaluate COINDEF on
20 applications with diverse code injection vulnerabilities
and report on its effectiveness in blocking all RCE exploit
attempts while only incurring non-intrusive false positives.

4.1.1. Diverse Code Injection Vulnerabilities. As
described in Tab. 2, the code injection points of the
vulnerabilities generally fall into three categories:
messages, remote resources, and markdown files, covering
the prevalent code injection attack vectors for Electron
applications, including template injection, markdown
preview, client-side-redirect, prototype pollution, and all
types of XSS. Among these attack vectors,
client-side-redirect is particularly threatening in Electron
applications and is not handled in prior work [20], [21],
because it opens a new website and completely takes over
the BrowserWindow, resulting in a legitimate call chain
through IPC to the MainProcess. For example,
collaboration applications like MSTeams, Slack, and
Discord have injection points within the messaging
feature. In the case of MSTeams, an attacker can exploit a
vulnerability in rendering the display name of a mentioned
user in a group chat to launch a code injection attack on
AngularJS’s template engine. For Slack, the injection point
is a malicious file uploaded to file.slack.com and then sent
to a victim via messaging. Similarly, for Discord, attackers
can inject malicious code through messages. These two
attacks leverage malicious iframes and a vulnerability of
Electron to launch an client-side-redirect attack to load
attacker-controlled content in the BrowserWindow,
which pollutes the prototype of certain built-in functions to
achieve RCE. Some applications load remote resources
and injection points can be found within these resources.
For example, in electron-crud, attackers can inject
JavaScript code into the records of the connected database
to launch a Stored XSS. The malicious records allow
attackers to execute arbitrary code. Productivity
applications like VSCode have injection points within

markdown files. These files may contain well-crafted
HTML payloads that are not properly sanitized. When
users interact with these markdown files, the injected code
executes, leading to RCE.

4.1.2. Experiment Setup. The primary objective of
evaluating COINDEF is to assess its effectiveness in
blocking code injection attempts while allowing legitimate
user inputs. To ensure realistic testing, we use the
vulnerable versions of each application listed in Tab. 2,
ensuring that all code injection attacks constitute novel
(i.e., 0-day) attacks for each application and COINDEF is
agnostic to these attack vectors.

Note that all the attack payloads have been confirmed
to work and are modified without causing harm to the end
host but triggering the logs that indicate it is an attack.
Specifically, for applications exploited by malicious
messages, we used an MITM proxy to inject malicious
payloads into the messages. For example, to exploit
MSTeams, we first logged in MSTeams with COINDEF
enabled as a potential victim. Then, we used another
account to send a message to the potential victim. The
message was hijacked and injected with a malicious
payload. Then, we observed whether the malicious payload
was executed to log the compromise indicator for each
step in the attack chain. We injected code into the remote
content for applications that exploit them. For example, to
exploit electron-crud, we created a MySQL database and
inserted a malicious record. Then, we used electron-crud
to read the malicious record to compromise the
application. For applications exploited by markdown
previews, we crafted malicious markdown files and opened
the files with those applications.

4.1.3. Learning Phase. Using the methods outlined in
§ 3.4, we collect AST profiles for all 20 applications.
Tab. 3 presents the size of these AST profiles alongside
the human effort required for their collection, measured in
hours. The AST profiles are organized by process (i.e.,
MainProcess, BrowserWindow, and SubFrames)

3135

TABLE 3: AST Profiles Collected in the Learning Phase.

Application Main Process Browser Window Sub-Frames Human
HoursSt. Dyn. St. Dyn. St. Dyn.

MSTeams 3,034 67 16,591 127 0 32 4
Slack 4,115 37 15,682 198 0 56 4
Discord 1,491 3 24,619 649 0 82 4
VSCode 2,808 135 21,806 310 0 9 2 (0.1∗)
GraSSHopper 831 42 5,798 189 0 0 1
ARDM 1,311 75 4,486 3 0 0 1
Joplin 873 73 5,734 53 0 0 2 (0.1∗)
Boostnote 710 24 9,226 1 0 0 1
Altair-graphql 1,439 1 10,515 13 0 0 1
Appium-desktop 2,243 11 7,315 53 0 0 1
SimpleNote 1,337 2 4,234 13 0 0 1 (0.1∗)
BlockBench 3,378 24 24,773 67 0 0 1
electron-crud 1,372 0 11,893 1 0 0 1
arc-electron 1,033 0 11,449 11 0 0 1
vmd 773 0 8,453 34 0 0 0.5
antares-sql 1,379 2 5,551 125 0 0 1
Markdownify 732 0 1,142 1 0 0 1
Poddycast 1,091 0 1,864 1 0 0 0.5
OhHai Browser 963 0 2,435 0 0 0 0.5
Jukeboks 1,268 0 912 0 0 0 0.5
∗ time cost with automated end-to-end testing. St.: Static. Dyn.: Dynamic.

and type (i.e., static or dynamic). Notably, only three
collaborative applications (i.e., MSTeams, Slack, and
Discord) and VSCode exhibit dynamic code in
SubFrames. This is because collaborative applications
include “In-App View” features, while VSCode executes
extensions in isolated environments. Our results show that
18 out of the 20 applications generate and run code
dynamically, with more complex applications producing
and executing greater amounts of dynamic code. The
applications also run more dynamic code within the
BrowserWindow process compared to MainProcess,
which is expected since users interact primarily through
the UI components, triggering dynamic code generation in
BrowserWindow. Notably, achieving a converged state
of learned AST profiles required approximately 4 hours for
complex applications and about 30 minutes for simpler
ones, as shown in the last column of Tab. 3. In the
converged state, the number of AST profiles no longer
increases, indicating that our exercising strategies have
fully covered the necessary code paths.

4.1.4. Enforcing Phase. When learning is complete, we
enter the enforcing mode for each application and use
them as our daily drivers for a month, during which we
attack each application. We evaluate COINDEF based on
the two security modes defined in COINDEF. The default
mode, security-first, disables SubFrames from loading
cross-origin resources (i.e., S.SubFrame = false) and
rejects unknown same-origin content in BrowserWindow
(i.e., S.SameOriginInBrowser = false), as
outlined in Alg. 1. The alternative mode, usability-first,
permits both cross-origin resource loading in SubFrames
and same-origin content in BrowserWindow to prioritize
flexibility and usability.

Code Coverage During Enforcement Testing. To fairly
evaluate the defensive mechanism for COINDEF, we adopt
function-level code coverage on first-party code, as defined

TABLE 4: Effectiveness of COINDEF under Enforcement.

Application Code
Cov.∗

of
Attacks

Security-first Usability-first Overhead
% (ms)FP FN FP FN

MSTeams 77.68% 3 0 0 0 0 6.07% (39)
Slack 84.71% 5 2 0 0 1 9.31% (19)
Discord 78.36% 6 10 0 0 1 6.79% (701)
VSCode 86.92% 4 5 0 0 0 1.83% (4)
GraSSHopper 88.12% 3 0 0 0 0 4.18% (12)
ARDM 82.57% 2 0 0 0 0 4.11% (16)
Joplin 79.28% 6 0 0 0 0 5.70% (63)
Boostnote 95.51% 3 0 0 0 0 2.71% (13)
Altair-graphql 75.58% 5 0 0 0 0 4.64% (18)
Appium-desktop 79.27% 3 0 0 0 0 4.49% (80)
SimpleNote 92.04% 3 0 0 0 0 2.97% (13)
BlockBench 78.61% 2 0 0 0 0 5.67% (48)
electron-crud 79.31% 7 0 0 0 0 2.51% (9)
arc-electron 93.27% 5 0 0 0 0 1.72% (11)
vmd 91.58% 3 0 0 0 0 3.55% (13)
antares-sql 85.49% 8 0 0 0 0 3.87% (9)
Markdownify 92.31% 4 0 0 0 0 2.90% (12)
Poddycast 100% 2 0 0 0 0 1.04% (2)
OhHai Browser 100% 2 0 0 0 0 2.35% (7)
Jukeboks 100% 3 0 0 0 0 2.71% (11)

Mean 87.03% 3.95 0.85 0 0 0.10 3.96%
∗: code coverage during enforcement testing.

by V8 [42]. This choice is motivated by the
well-documented bloat of JavaScript dependencies, where
developers may import a single function from a large
module, resulting in low overall code coverage if
third-party code is included. Moreover, we focus on
function-level rather than block-level code coverage, as
COINDEF enforces the integrity of the AST profile for
JavaScript functions, not their individual blocks. Once a
function passes validation, it is allowed to execute in full.
We use Acorn [43], a popular JavaScript parser, to
statically count the number of functions in the first-party
code as our ground truth. During the testing phase, we log
the number of functions invoked to calculate the test
coverage. As shown in Tab. 4, the applications were
exercised thoroughly. For simple and small applications
(three out of 20), achieving 100% code coverage was
straightforward. For medium size applications (five out of
20), we achieved over 90% code coverage. For more
complex applications (12 out of 20), such as Slack and
VSCode, we achieved over 75% code coverage, indicating
robust test coverage across varying application
complexities.

Protection Result. As illustrated in Tab. 4, we executed a
total of 79 attacks across 20 applications, with each
application facing between two and eight targeted attacks.
Each individual attack focused on a specific code injection
point. However, in some cases, reaching RCE required a
series of attacks in a kill chain, as illustrated in § 2.1. For
instance, six attacks launched against Discord formed two
separate attack sessions, each involving three
interdependent attacks (i.e., client-side-redirect, prototype
pollution, and RCE) that combined to achieve RCE. In the
security-first mode, COINDEF successfully blocked all
code injection attempts for all 20 applications with few
false positives. In usability-first mode, COINDEF allowed
two code injections to bypass protection in two
applications but still prevented the final RCE with zero

3136

Figure 7: The False Positive Example Observed on Discord.
Although the “In-App View” video player is disabled, the
user can still click the link to open the video using a browser.

TABLE 5: Runtime Overhead During User Interaction.

Time (ms) Runs Min Median Mean Max

Baseline 10 111.9 116.9 116.63 119.9
COINDEF 10 113.9 116.9 117.02 120.1

Overhead 1.78% 0.00% 0.33% 0.17%

false positives. This result suggests that for applications
primarily used locally without loading remote content
(e.g., GraSSHopper, SimpleNote, Markdownify), COINDEF
reliably prevents code injection attacks under both modes.
For applications (e.g., Slack, Discord) with more
interactive features, such as “In-App View” functionality,
COINDEF may miss one attack targeting SubFrames but
it nonetheless delivers robust protection by securing
critical processes in the BrowserWindow and
MainProcess contexts, blocking any code injections
into these processes and subsequent RCE attacks (RQ1).
False Positives. In our evaluation, we observed 17 false
positives in the security-first mode across 3 of the 20
applications tested, while the usability-first mode produced
zero false positives. These 17 cases fall into two
categories: 1) unlearned features provided by remote
content and 2) unlearned updates. Specifically, 12 false
positives resulted from “In-App View” features in Slack
and Discord, such as video playback or file previews
within isolated SubFrames. In security-first mode, scripts
running within SubFrames are disabled, blocking this
content, as illustrated in Fig. 7. Although this leads to an
empty video window, users can still click the link to open
it in an external browser. The remaining five false
positives occurred in VSCode due to extension updates that
introduced new script files. We suggest that users can
temporarily enable learning mode for these extensions to
gather the necessary AST profiles for these updates.
False Negatives. In the usability-first mode, we observed
two false negatives, while the security-first mode produced
zero false negatives. Both false negatives stemmed from
exploits targeting “In-App View” features. Specifically,
these attacks injected code into trusted SubFrames,
attempting to escalate privileges by controlling a
BrowserWindow. Although the injected code in
SubFrames succeeded in accessing a BrowserWindow
object, COINDEF blocked further code execution in the
BrowserWindow process due to its strict security

enforcement upon the BrowserWindow process.
Therefore, COINDEF prevented the RCE even though the
attack succeeded in the initial stage in SubFrames.

The FP and FN analysis suggest that the impact on the
user experience is minimal (RQ2). If the users want to enjoy
the “In-App View” features, they can opt-in for the usability-
first mode, in which the security in the main application
remains guaranteed.

4.2. Runtime Overhead

To answer RQ3, we conducted two runtime
performance evaluation experiments to assess the runtime
overhead introduced by COINDEF to applications. Both
experiments were performed on Ubuntu 22.04, equipped
with an Intel CPU E5-2680v3 operating at 2.50GHz and
64 GB DDR4 memory running at 2133 MHz.
Page Load. In the first experiment, we measured the
overhead caused by COINDEF during the page loading
process, which is in line with prior work [20], [44]–[47].
We initiated a timer when the navigationStart event
was triggered and concluded the measurement when the
loadEventEnd event was fired on the initial web page.
This time difference represented the page load time. As
some applications load remote websites as their first page
(e.g., Slack and Discord), we ran the application once
before testing to warm up the network cache, thus
reducing the impact of network latency. For more complex
applications like VSCode, which encompass multiple
pages/frames, we only measured the overhead for the main
frame (e.g., the editor window for VSCode).

To calculate the overhead for page load, we executed
the application ten times with and without COINDEF
enabled, selecting the median time cost. As indicated in
the last column of Tab. 4, COINDEF introduced an average
overhead of only 3.96%, with the highest overhead of
9.31% observed for Slack and the lowest of 1.04% for
Poddycast. Although the overhead for Slack appears
relatively high, the additional time contributed by
COINDEF is merely 19 milliseconds. Notably, COINDEF
exhibits higher overhead for applications that require
network connections, such as MSTeams and Discord. For
instance, Discord performs update checks before loading
the first page, and our testing environment’s first page
comprises rich content with 57 script files sourced from
discord.com. These 57 script files triggered validation for
over 20,000 AST profiles.
Interaction. Consistent with previous work [21], we
utilized the Speedometer 2.0 benchmark suite [48] to
measure the overhead for user interactions. The
Speedometer 2.0 benchmark suite comprises 17 uniquely
implemented TodoMVC applications. The benchmark
simulates user actions of adding, completing, and
removing items from a to-do list. In this process, the
benchmark sequentially executes the 17 TodoMVC
applications. For each application, the test begins by
adding 100 items one at a time, with each item containing

3137

TABLE 6: COINDEF Compared With the State-of-The-Art.

Attack
Vectors

of
Attacks

SYNODE [16] DOMTYPING [21] XGUARD [20] COINDEF∗

FP FN FP FN FP FN FP FN

Discord
CSR 1 0 1 0 1 0 1 1 0
PP 1 0 1 0 1 0 1 0 0

RCE 1 0 1 0 1 0 0 0 0

jukebox
D-XSS 1 0 1 0 0 0 1 0 0
RCE 1 0 1 0 0 0 0 0 0

AllinOne†
D-XSSD 2 0 2 1 0 0 2 0 0
D-XSSE 2 1 0 0 2 0 2 0 0
S-XSSD 2 0 2 1 0 0 2 0 0
S-XSSE 2 1 0 0 2 0 2 0 0

CSR 2 0 2 0 2 0 2 1 0
PP 1 0 1 0 1 0 1 0 0

RCE 10 0 6 0 6 2 0 0 0

Total CI 14 2 10 2 9 0 14 2 0
Total RCE 12 0 8 0 7 2 0 0 0
CI-Code Injection, CSR-Client-Side-Redirect, PP-Prototype Pollution, D-: DOM-based, S-:Stored,
XSSD: XSS via DOM Manipulation, XSSE : XSS via dynamic code execution.
†: 14 code injection attacks leading to 12 RCE. PP does not lead to RCE directly.
∗: in the security-first mode

some content. Subsequently, the test iteratively marks each
item as complete. Finally, the benchmark concludes by
removing all the items individually. We repeated this
process ten times, with and without COINDEF. As shown
in Tab. 5, the time cost for running all 17 TodoMVC
applications ranges from 111.9 milliseconds to 119.9
milliseconds for the baseline version of Electron, while it
is between 113.9 milliseconds and 120.1 milliseconds. The
interactive overhead is as small as 0 and as large as
1.78%. By design, COINDEF is not supposed to introduce
runtime overhead for user interaction because COINDEF
does not hook in function calls. Therefore, we applied all
the data samples to measure their confidence intervals and
concluded that the two sample sets originate from the
same distribution, which indicates that COINDEF does not
introduce any runtime overhead during user interactions.
Note that in scenarios where the application loads remote
scripts, there will be minimal overhead as we measured for
app startup (shown in Tab. 4). However, compared with
the network latency during user interaction, such
milliseconds overhead is negligible.
Storage. The storage overhead grows linearly (i.e., O(n)
where n is the number of functions defined in the app).
The largest one (Discord) is 2 MB on disk and 10 MB in
memory, indicating this overhead is negligible.

4.3. Comparison To State-of-The-Art

To answer RQ4, we compare COINDEF with the most
relevant state-of-the-art solutions that either directly
protect Electron applications or can be extended to do so.
Based on our research, we identified three SOTA
solutions: SYNODE, XGUARD, and DOMTYPING. While
SYNODE was originally designed to protect NPM modules
only, it can be extended to address RCE threats in Electron
applications. XGUARD and DOMTYPING are specifically
designed for Electron applications.
Experiment Setup. For a representative comparison, we
selected three applications: Discord, a complex application

discussed in § 2.1; Jukeboks, a simpler application; and a
custom-built application (i.e., AllinOne) that incorporates a
range of attack vectors, including XSS, OR, PP, and RCE.
Specifically, we derived code injection attacks based on
the CVEs identified in our evaluation dataset and the XSS
cheat sheet from OWASP [49] into AllinOne. These
attacks include DOM-based XSS via DOM manipulation
(D-XSSD) and dynamic code execution using eval
(D-XSSE), Stored XSS through DOM manipulation
(S-XSSD) and dynamic code execution using eval
(S-XSSE), client-side-redirect (CSR) from a SubFrame,
prototype pollution (PP), and the final RCE with each
code injection attack leads to except for PP. In total, the
AllinOne contains 11 code injection points leading to 10
RCE attacks. Notably, we set COINDEF to the default
security-first mode for this comparison.

Result. We present the comparison result in Tab. 6.
SYNODE failed to block 10 code injection attacks, eight of
which ultimately resulted in RCE. This is because
SYNODE cannot cover code injection through DOM
modifications including client-side-redirect. Moreover,
SYNODE produces two false positives for dynamic code
execution through eval due to the inaccuracy of static
analysis on implicit data flow for string concatenation.
DOMTYPING failed to prevent nine code injection attacks,
leading to seven cases of RCE. this is because
DOMTYPING does not handle client-side-redirect and
dynamic code execution. Furthermore, DOMTYPING
reported two false positives for legitimate DOM
modifications. Although XGUARD successfully prevented
all RCE attacks, it failed to block all 14 code injection
attempts, meaning that attacks could progress to critical
stages before being mitigated. Meanwhile, XGUARD
reported two false positives due to the incomplete call
chain modeled based on minified JavaScript code. In
contrast, COINDEF provided complete protection,
successfully preventing all code injection and RCE attacks
across all scenarios. This underscores COINDEF ’s
comprehensive coverage and robust defensive capabilities
compared to existing solutions.

Case Study. To better understand the comprehensive
protection COINDEF offers, we elaborate the experiment
process with a case study for Discord in Fig. 8. The
attacker first injected JavaScript code onto the DOM of the
vulnerable website. The injected code launched a
DOM-based XSS attack to initiate the client-side-redirect
attack. When compiling the code for navigating the
browser window of Discord, COINDEF disabled any code
running in SubFrames, and thus rejected the compilation
under the security-first mode. Subsequently, the interpreter
returned a noop function, and the client-side-redirect
attack was prevented in step 1 . What if the user was
under usability-first mode and the attacker reached 2 ? To
show that COINDEF can still provide protection and
prevent the attack from evolving into a remote code
execution attack, we turned on the usability-first mode.
When compiling the malicious script inside the malicious

3138

window.top.location = "//malicious.com"

2 Attacker controlled website to overwrite built-in functions to
hijack control- and data flows due to the shared context.

1 An open-redirect attack to navigate the browser window

RegExp.prototype.test = function(){return false;}
Array.prototype.join = function(){return "cmd";}
DiscordNative....getGPUDriverVersions();

function getGPUDriverVersions(){
 execa(nvidiaSmiPath, []);
}
function execa(filePath, args){
 const isExecutableRegExp = /\.(?:com|exe)$/i;
 //...
 const needShell = !isExecutableRegExp.test(filePath);
 if (needShell) {
 const shellCommand =[filePath].concat(parsed.args).join(' ');
 }
 childProcess.spawn(shellCommand, parsed.args, parsed.options);
}

3

4

5

Hijack control flow

Hijack data flow

Achieve arbitrary code execution

Sh
ar

ed

Open Redirect

Prototype Pollution

RCE

Figure 8: The Detailed Attack Chain on Discord.

website, COINDEF detected that the malicious JavaScript
code was going to run in the context of
BrowserWindow. Then, COINDEF pulled out the AST
profiles built for BrowserWindow and found no entries
for the malicious script. Subsequently, COINDEF rejected
the compilation and the interpreter returned a noop
function. If the attacker was smarter and could craft the
malicious code to pass the validation and get executed in
step 2 . To simulate this effect, we modified the code and
let the attack proceed to this step. However, in order to
invoke the privileged module (DiscordNative shared
by the MainProcess) to launch RCE, the attacker must
overwrite two methods for two built-in JavaScript objects:
test for RegExp to hijack the control flow in step 3
and join for Array to hijack the data flow in step 5 .
No matter how sophisticated the attacking code became
when being executed, it had to create two functions, which
created two new AST profiles. These two new dynamic
profiles were never found in the AST profiles for
BrowserWindow given its running context. Thus,
COINDEF blocked the prototype pollution and
subsequently prevented the RCE.

Throughout these steps, it is clear that DOMTYPING
and SYNODE failed to handle any of them because this
attack chain does not require DOM modifications and the
prototype pollution attack hijacks both control and data
flow to feed an arbitrary command into spawn. Even if
we extended SYNODE to cover more injection APIs (e.g.,
spawn), it failed to generate AST templates for this lib as
it is designed to execute arbitrary commands. Although
XGUARD caught the final RCE by blocking an
unauthorized call chain to spawn, the attackers can
change strategies by stealing the cookies of Discord or
launching social engineering attacks when redirecting the
BrowserWindow to a phishing website.

5. Discussions

Robustness. COINDEF demonstrates its robustness by
successfully blocking all attacks, among which are 20
cited attacks and 59 variants trying to evade COINDEF.

These attacks include DOM manipulation, dynamic
execution, and other evasion techniques built on top of our
domain expertise. To achieve this robustness, COINDEF
limits attackers’ ability to inject foreign code through:
execution context integrity enforcement (§ 3.3.2) and AST
structural integrity enforcement (§ 3.3.1) as formalized in
§ 3.6. First, COINDEF tracks execution context integrity,
ensuring that even structurally valid but behaviorally
malicious scripts are detected. Attackers cannot arbitrarily
construct a legitimate AST for a given injection point, as
the execution context restricts possible AST modifications.
Then, COINDEF only allows data nodes to change to
accommodate legitimate user inputs. Any injected code
inevitably modifies a data node into a subtree, which
COINDEF blocks. This enforcement applies across
DOM-based injections, template literals, and eval-like
APIs, preventing attackers from rewriting execution logic.

Deployment. COINDEF identifies the required Electron
version and downloads a corresponding instrumented
Electron version, leaving the application code intact. This
convenient integration offers improved code injection
security without modifications or source code access. To
generate AST profiles, application developers can leverage
the existing UI testing cases to provide comprehensive
AST profiles. As for IT administrators and home users,
they can leverage automated crawlers and manual
exercises to build AST profiles that are customized for
their use patterns, in line with prior work [14], [21], [50].

Portability. The modifications COINDEF has made for
AST profile generation and enforcement are minimal,
numbering fewer than 150 lines in the V8’s code base and
two self-contained files for logging and validation,
accounting for 500+ lines of C++ code. These files
containing COINDEF’s hooks remain almost consistent
across ten major Electron versions evaluated for COINDEF
(Tab. 2), simplifying porting and reducing maintenance
and compatibility efforts.

3139

6. Limitations

Code Coverage. As observed in § 4.1, COINDEF will
incur false positives in the security-first mode due to
unlearned AST profiles from remote resources. It is well
understood that no single security system can promise full
code coverage during the dynamic profiling of extensive
programs, meaning some code may not be profiled. Using
the hybrid profiling approach discussed in § 3.4, the AST
profiles we collected support 20 applications with a testing
code coverage of 87.03% on average, with only incurring
a few false positives. We consider further increasing the
code coverage for COINDEF as an orthogonal problem.
COINDEF can benefit from the recent research in
debloating and fuzzing web applications [32], [33], [51],
[52] for expanded coverage.

Direct Command Injection. COINDEF does not offer
direct protection against command injection (e.g.,
malicious data directly injected into exec). However, data
injection through code injection attempts is prevented by
COINDEF. To improve COINDEF further, we could add
NodeJS process handler protection and generate shell
command profiles for inputs sent to related APIs (e.g.,
exec, spawn). We leave this as future work.

7. Related Work

Code Injection Mitigation. Security researchers have
extensively studied code injection vulnerabilities in the
web ecosystem over the past decade. Prior solutions, such
as dynamic taint analysis [11]–[13], [15], achieve effective
mitigation by instrumenting the browser engine to track
data flows. However, these approaches often incur
significant runtime overhead and are challenging to
maintain due to the frequency of browser updates. Other
efforts [16], [17], attempt to replace the dangerous eval
with “safe” eval by modifying the way to invoke eval.
While useful, this approach does not extend well to the
Electron framework due to its broad attack surface, as
discussed in § 4.3, and lacks tamper-resistance as they are
in the same privilege layer as attackers for Electron
applications. Additionally, whitelist-based solutions [14],
[50], [53] enforce AST integrity to prevent web-based
code injection, but they enforce policies before scripts are
parsed, incurring high runtime overhead. These methods
also lack the execution context needed to counter mimicry
attacks in Electron applications, limiting their effectiveness
in complex cross-environment applications. COINDEF
stands apart from existing solutions for two main reasons.
First, it maintains the AST’s structural integrity along with
its running context, making it effective against mimicry
attacks that other defenses miss. Second, COINDEF works
directly within the interpreter engine, allowing it to protect
both native and web environments together, covering all
code injection scenarios in Electron applications with
negligible runtime overhead. This combined approach

makes COINDEF particularly effective for securing
applications with mixed web and native elements.

JavaScript Security. Various program analysis techniques
have been developed to analyze JavaScript programs and
uncover vulnerabilities. Symbolic analysis-based
solutions [54]–[59] are commonly employed to detect
prototype pollution vulnerabilities by examining possible
object inheritance issues and property changes. Dynamic
analysis-based methods [44]–[46], [60]–[62] focus on
instrumenting the browser engine to gather runtime traces
of JavaScript code, providing insights into potential
vulnerabilities through behavior tracking. Although these
techniques are effective for analyzing JavaScript behavior
in traditional web environments, they cannot be directly
applied to Electron applications for defending against code
injection, due to the unique attack surfaces and shared
contexts present in these hybrid applications.

Electron Security. Recent studies highlight the security
risks in applications built on the Electron framework. Xiao
et al. [20] showed how shared contexts in Electron could
escalate XSS attacks to severe RCE incidents. They
developed XGUARD to prevent RCE, but it addresses only
the symptoms, not the root cause of code injection attacks.
Jin et al. [21] studied vulnerabilities in the UI components
of Electron applications, proposing DOMTYPING to
enforce DOM integrity, which effectively prevents code
injection through DOM modifications but doesn’t address
dynamic code execution or client-side-redirect issues. Ali
et al. introduced INSPECTRON [22], designed to identify
misconfigurations in Electron applications. However, even
with proper configurations, attackers can exploit Electron
vulnerabilities [19] to gain privileged access. In contrast,
COINDEF directly targets the root cause of RCE: code
injection in Electron applications. It provides
comprehensive protection and covers both dynamic code
execution and DOM manipulation scenarios, making it
resilient against a broader range of code injection threats.

8. Conclusion

In this paper, we introduce COINDEF, an advanced
security tool designed to prevent code injection attacks in
Electron applications. COINDEF enforces the AST
structural integrity with contextual information at all code
execution points within the language interpreter. Our
evaluation demonstrates that COINDEF effectively
mitigates various code injection forms, including DOM
manipulations and JavaScript’s dynamic code execution
APIs, preventing potential remote code execution exploits.
Additionally, COINDEF operates with negligible runtime
overhead and minimal false positives, offering both
security-first and usability-first modes to accommodate
varying security and usability needs. We release the source
code of COINDEF and instructions to use it to support
further research and development on
https://github.com/ian7yang/CoInDef.

3140

9. Acknowledgments

We thank the anonymous reviewers and our shepherd
for their helpful and informative feedback. This material
was supported in part by National Science Foundation
(NSF) under grants No. CNS-2229876; the Office of Naval
Research (ONR) under grants N00014-17-1-2179; the
Defense Advanced Research Projects Agency (DARPA)
under contract N66001-21-C-4024 Any opinions, findings,
conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of NSF, ONR, or DARPA.

References

[1] Electron — npm trends, https://npmtrends.com/electr
on, (Accessed on 08/30/2024).

[2] How water labbu exploits electron-based
applications, https :
/ /www.trendmicro .com/en za / research/22/ j /how-
water - labbu - exploits - electron - based -
applications.html, (Accessed on 08/30/2024).

[3] Cve - cve-2021-21220, https : / / cve . mitre . org / cgi -
bin/cvename.cgi?name=CVE-2021-21220, (Accessed
on 08/30/2024).

[4] Slack — report #783877 - remote code execution in
slack desktop apps + bonus — hackerone,
https://hackerone.com/reports/783877/, (Accessed on
09/01/2024).

[5] Mksb(en): Discord desktop app rce, https://mksben.
l0.cm/2020/10/discord-desktop-rce.html, (Accessed
on 08/30/2024).

[6] Rce in mattermost desktop earlier than 4.2.0 - dev
community, https : / / dev . to / nlowe / rce - in - matterm
ost - desktop - earlier - than - 420 - 5aef, (Accessed on
09/01/2024).

[7] Oskarsve/ms-teams-rce, https://github.com/oskarsve/
ms-teams-rce/, (Accessed on 09/01/2024).

[8] Cve-2021-28471 - security update guide - microsoft -
remote development extension for visual studio code
remote code execution vulnerability, https://msrc.mi
crosoft.com/update-guide/vulnerability/CVE-2021-
28471, (Accessed on 09/01/2024).

[9] Execution with unnecessary privileges in arc-electron
· ghsa-v3wr-67px-44xg · github advisory database, h
ttps://github.com/advisories/GHSA-v3wr-67px-44xg,
(Accessed on 09/01/2024).

[10] Xss vulnarability in markdown mode, https : / / githu
b .com/Automattic / simplenote - electron / issues /487,
(Accessed on 09/01/2024).

[11] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and
M. Johns, “Precise client-side protection against
dom-based cross-site scripting,” in Proceedings of
the 23rd USENIX Security Symposium (Security),
San Diego, CA, Aug. 2014, pp. 655–670.

[12] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and
M. Johns, “From facepalm to brain bender:
Exploring client-side cross-site scripting,” in
Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS),
Denver, CO, Oct. 2015, pp. 1419–1430.

[13] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Cross site scripting
prevention with dynamic data tainting and static
analysis.,” in Proceedings of the 14th Annual
Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2007.

[14] P. Soni, E. Budianto, and P. Saxena, “The sicilian
defense: Signature-based whitelisting of web
javascript,” in Proceedings of the 22nd ACM
Conference on Computer and Communications
Security (CCS), Denver, CO, Oct. 2015.

[15] S. Lekies, B. Stock, and M. Johns, “25 million
flows later: Large-scale detection of dom-based xss,”
in Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS),
Berlin, Germany, Oct. 2013, pp. 1193–1204.

[16] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode:
Understanding and automatically preventing
injection attacks on node. js.,” in Proceedings of the
2018 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb.
2018.

[17] S. H. Jensen, P. A. Jonsson, and A. Møller,
“Remedying the eval that men do,” in Proceedings
of the 2012 International Symposium on Software
Testing and Analysis, 2012, pp. 34–44.

[18] I. Koishybayev and A. Kapravelos, “Mininode:
Reducing the attack surface of node.js applications,”
in 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020), San
Sebastian, Spain, Oct. 2020.

[19] Electronjs electron : Security vulnerabilities, cves, h
ttps://www.cvedetails.com/vulnerability-list/vendor
id-17824/product id-44696/Electronjs-Electron.html,
(Accessed on 11/05/2024).

[20] F. Xiao, Z. Yang, J. Allen, G. Yang, G. Williams,
and W. Lee, “Understanding and mitigating remote
code execution vulnerabilities in cross-platform
ecosystem,” in Proceedings of the 29th ACM
Conference on Computer and Communications
Security (CCS), Los Angeles, US, Nov. 2021,
pp. 2975–2988.

[21] Z. Jin, S. Chen, Y. Chen, H. Duan, J. Chen, and
J. Wu, “A security study about electron applications
and a programming methodology to tame dom
functionalities,” in Proceedings of the 2023 Annual
Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2023.

[22] M. M. Ali, M. Ghasemisharif, C. Kanich, and
J. Polakis, “Rise of inspectron: Automated
black-box auditing of cross-platform electron apps,”

3141

https://npmtrends.com/electron
https://npmtrends.com/electron
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220
https://hackerone.com/reports/783877/
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://dev.to/nlowe/rce-in-mattermost-desktop-earlier-than-420-5aef
https://dev.to/nlowe/rce-in-mattermost-desktop-earlier-than-420-5aef
https://github.com/oskarsve/ms-teams-rce/
https://github.com/oskarsve/ms-teams-rce/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28471
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28471
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28471
https://github.com/advisories/GHSA-v3wr-67px-44xg
https://github.com/advisories/GHSA-v3wr-67px-44xg
https://github.com/Automattic/simplenote-electron/issues/487
https://github.com/Automattic/simplenote-electron/issues/487
https://www.cvedetails.com/vulnerability-list/vendor_id-17824/product_id-44696/Electronjs-Electron.html
https://www.cvedetails.com/vulnerability-list/vendor_id-17824/product_id-44696/Electronjs-Electron.html
https://www.cvedetails.com/vulnerability-list/vendor_id-17824/product_id-44696/Electronjs-Electron.html

in Proceedings of the 33rd USENIX Security
Symposium (Security), Philadelphia, PA, Aug. 2024.

[23] Z. Su and G. Wassermann, “The essence of
command injection attacks in web applications,” in
Proceedings of the 33rd ACM Symposium on
Principles of Programming Languages (POPL),
Charleston, South Carolina, Jan. 2006.

[24] C. Reis, A. Moshchuk, and N. Oskov, “Site
isolation: Process separation for web sites within the
browser,” in Proceedings of the 28th USENIX
Security Symposium (Security), Santa Clara, CA,
Aug. 2019.

[25] Nvd - cve-2020-15096, https : / / nvd . nist . gov / vuln /
detail/CVE-2020-15096, (Accessed on 09/23/2023).

[26] Nvd - cve-2020-15215, https : / / nvd . nist . gov / vuln /
detail/CVE-2020-15215, (Accessed on 09/23/2023).

[27] Cve - cve-2020-15174, https : / / cve . mitre . org / cgi -
bin/cvename.cgi?name=2020- 15174, (Accessed on
08/30/2024).

[28] Security fix for arbitrary code execution - huntr.dev
by huntr-helper · pull request #1 · mikeerickson/cd-
messenger, https://github.com/mikeerickson/cd-mess
enger/pull/1, (Accessed on 09/01/2024).

[29] D. Wagner and P. Soto, “Mimicry attacks on
host-based intrusion detection systems,” in
Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS),
Washington, DC, Oct. 2002, pp. 255–264.

[30] Cve - cve-2022-29247, https : / / nvd . nist . gov / vuln /
detail/CVE-2022-29247, (Accessed on 08/30/2024).

[31] Codeinjection, https : / / codeql . github . com / codeql -
standard- libraries/javascript/semmle/javascript/secu
rity/dataflow/CodeInjectionCustomizations.qll/modu
le.CodeInjectionCustomizations$CodeInjection.html,
(Accessed on 10/28/2024).

[32] R. Jahanshahi, B. A. Azad, N. Nikiforakis, and
M. Egele, “Minimalist: Semi-automated debloating
of {php} web applications through static analysis,”
in Proceedings of the 32nd USENIX Security
Symposium (Security), Anaheim, CA, Aug. 2023.

[33] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less
is more: Quantifying the security benefits of
debloating web applications,” in Proceedings of the
28th USENIX Security Symposium (Security), Santa
Clara, CA, Aug. 2019.

[34] Cve-2021-43908 - security update guide - microsoft
- visual studio code spoofing vulnerability, https : / /
msrc.microsoft.com/update-guide/vulnerability/CVE-
2021-43908, (Accessed on 09/01/2024).

[35] Joplin desktop app vulnerable to cross-site scripting
· cve-2022-45598 · github advisory database, https
: / / github . com / advisories / GHSA - h6c2 - 879r - jffh,
(Accessed on 09/01/2024).

[36] Appium-desktop os command injection vulnerability
· cve-2023-2479 · github advisory database, https :
/ / github . com / advisories / GHSA - xq6j - x8pq - g3gr,
(Accessed on 09/01/2024).

[37] Cross site scripting vulnerability,
https : / / github . com / yoshuawuyts / vmd / issues / 137,
(Accessed on 09/01/2024).

[38] Markdownify subject to remote code execution via
malicious markdown file · cve-2022-41709 · github
advisory database, https :
/ /github .com/advisories /GHSA- c942- mfmp- p4fh,
(Accessed on 09/01/2024).

[39] Os command injection vulnerability found in
poddycast,
https : / / huntr . dev / bounties / 1624637557081 -
MrChuckomo / poddycast/, (Accessed on
09/01/2024).

[40] Xss vulnerability · issue #23 · ohhaibrowser/browser,
https://github.com/OhHaiBrowser/Browser/issues/23,
(Accessed on 09/01/2024).

[41] Github advisory database, https://github.com/advisor
ies?query=type:reviewed+ecosystem:npm, (Accessed
on 09/01/2024).

[42] Javascript code coverage - v8, https://v8.dev/blog/
javascript-code-coverage, (Accessed on 09/01/2024).

[43] Acornjs/acorn: A small, fast, javascript-based
javascript parser, https://github.com/acornjs/acorn,
(Accessed on 08/29/2024), 2024.

[44] J. Allen, Z. Yang, M. Landen, R. Bhat, H. Grover,
A. Chang, Y. Ji, R. Perdisci, and W. Lee,
“Mnemosyne: An Effective and Efficient
Postmortem Watering Hole Attack Investigation
System,” in Proceedings of the 27th ACM
Conference on Computer and Communications
Security (CCS), Virtual Event, Nov. 2020,
pp. 787–802.

[45] Z. Yang, J. Allen, M. Landen, R. Perdisci, and
W. Lee, “Trident: Towards detecting and mitigating
web-based social engineering attacks,” in
Proceedings of the 32nd USENIX Security
Symposium (Security), Anaheim, CA, Aug. 2023,
pp. 1681–1698.

[46] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci,
“Jsgraph: Enabling reconstruction of web attacks via
efficient tracking of live in-browser javascript
executions,” in Proceedings of the 2018 Annual
Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[47] J. Allen, Z. Yang, F. Xiao, M. Landen, R. Perdisci,
and W. Lee, “Webrr: A forensic system for replaying
and investigating web-based attacks in the modern
web,” in Proceedings of the 33rd USENIX Security
Symposium (Security), Philadelphia, PA, Aug. 2024.

[48] Speedometer 2.0, https://browserbench.org/Speedom
eter2.0/, (Accessed on 09/01/2024).

[49] A03 injection - owasp top 10:2021,
https : / / owasp . org / Top10 / A03 2021 - Injection/,
(Accessed on 09/01/2024).

[50] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and
T. Zhou, “Cspautogen: Black-box enforcement of
content security policy upon real-world websites,” in
Proceedings of the 23rd ACM Conference on

3142

https://nvd.nist.gov/vuln/detail/CVE-2020-15096
https://nvd.nist.gov/vuln/detail/CVE-2020-15096
https://nvd.nist.gov/vuln/detail/CVE-2020-15215
https://nvd.nist.gov/vuln/detail/CVE-2020-15215
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-15174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-15174
https://github.com/mikeerickson/cd-messenger/pull/1
https://github.com/mikeerickson/cd-messenger/pull/1
https://nvd.nist.gov/vuln/detail/CVE-2022-29247
https://nvd.nist.gov/vuln/detail/CVE-2022-29247
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-43908
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-43908
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-43908
https://github.com/advisories/GHSA-h6c2-879r-jffh
https://github.com/advisories/GHSA-h6c2-879r-jffh
https://github.com/advisories/GHSA-xq6j-x8pq-g3gr
https://github.com/advisories/GHSA-xq6j-x8pq-g3gr
https://github.com/yoshuawuyts/vmd/issues/137
https://github.com/advisories/GHSA-c942-mfmp-p4fh
https://github.com/advisories/GHSA-c942-mfmp-p4fh
https://huntr.dev/bounties/1624637557081-MrChuckomo/poddycast/
https://huntr.dev/bounties/1624637557081-MrChuckomo/poddycast/
https://github.com/OhHaiBrowser/Browser/issues/23
https://github.com/advisories?query=type:reviewed+ecosystem:npm
https://github.com/advisories?query=type:reviewed+ecosystem:npm
https://v8.dev/blog/javascript-code-coverage
https://v8.dev/blog/javascript-code-coverage
https://github.com/acornjs/acorn
https://browserbench.org/Speedometer2.0/
https://browserbench.org/Speedometer2.0/
https://owasp.org/Top10/A03_2021-Injection/

Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016, pp. 653–665.

[51] B. Amin Azad, R. Jahanshahi, C. Tsoukaladelis,
M. Egele, and N. Nikiforakis, “AnimateDead:
Debloating Web Applications Using Concolic
Execution,” in Proceedings of the 32nd USENIX
Security Symposium (Security), Anaheim, CA, Aug.
2023.

[52] E. Trickel, F. Pagani, C. Zhu, L. Dresel, G. Vigna,
C. Kruegel, R. Wang, T. Bao, Y. Shoshitaishvili, and
A. Doupé, “Toss a Fault to Your Witcher: Applying
Grey-box Coverage-Guided Mutational Fuzzing to
Detect SQL and Command Injection
Vulnerabilities,” in Proceedings of the 44th IEEE
Symposium on Security and Privacy (S&P), San
Francisco, CA, May 2023.

[53] A. Fass, M. Backes, and B. Stock, “Jstap: A static
pre-filter for malicious javascript detection,” in
Proceedings of the 35th Annual Computer Security
Applications Conference (ACSAC), San Juan, Puerto
Rico, Dec. 2019, pp. 257–269.

[54] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining
Node.js Vulnerabilities via Object Dependence
Graph and Query,” Tech. Rep.

[55] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting
node. js prototype pollution vulnerabilities via object
lookup analysis,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, 2021, pp. 268–279.

[56] Z. Liu, K. An, and Y. Cao, “Undefined-oriented
programming: Detecting and chaining prototype
pollution gadgets in node. js template engines for
malicious consequences,” in Proceedings of the 45th
IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, May 2024.

[57] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou,
V. N. Venkatakrishnan, and Y. Cao, “Scaling
javascript abstract interpretation to detect and
exploit node.js taint-style vulnerability,” in
Proceedings of the 44th IEEE Symposium on
Security and Privacy (S&P), San Francisco, CA,
May 2023.

[58] C. Yagemann, M. Pruett, S. P. Chung, K. Bittick,
B. Saltaformaggio, and W. Lee, “{Arcus}: Symbolic
root cause analysis of exploits in production
systems,” in Proceedings of the 30th USENIX
Security Symposium (Security), Virtual Conference,
Aug. 2021.

[59] C. Yagemann, S. P. Chung, B. Saltaformaggio, and
W. Lee, “Automated bug hunting with data-driven
symbolic root cause analysis,” in Proceedings of the
28th ACM Conference on Computer and
Communications Security (CCS), Seoul, South
Korea, Nov. 2021.

[60] J. Jueckstock and A. Kapravelos, “VisibleV8:
In-browser Monitoring of JavaScript in the Wild,” in
Proceedings of the Internet Measurement

Conference (IMC), Amsterdam, Netherlands, Oct.
2019.

[61] R. P. Kasturi, Y. Sun, R. Duan, O. Alrawi, E. Asdar,
V. Zhu, Y. Kwon, and B. Saltaformaggio, “Tardis:
Rolling back the clock on cms-targeting cyber
attacks,” in Proceedings of the 41st IEEE
Symposium on Security and Privacy (S&P), Virtual
Conference, May 2020.

[62] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder,
B. Saltaformaggio, and W. Lee, “Towards measuring
supply chain attacks on package managers for
interpreted languages,” in Proceedings of the 2020
Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2020.

3143

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents a defense mechanism, COINDEF, to
mitigate code injection attacks in Electron applications. The
mechanism enforces structural integrity of Abstract Syntax
Trees using a combination of hybrid profiling and runtime
enforcement.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) The paper creates a new tool to enable future science.
A significant amount of engineering went into the
development of COINDEF, and the authors make the
implementation publicly available, thus enabling new
research to further evaluate and improve the system.

2) The paper provides a valuable step forward in an
established field. The protection of the integrity of
Abstract Syntax Trees has been understood as a
useful defense mechanism for a while, and this paper
builds a valuable instantiation of this technique for
the important class of Electron applications.

A.4. Noteworthy Concerns

1) The evaluation of the usability of COINDEF could be
further improved: usability has only been evaluated
through use by the authors.

3144

