
lable at ScienceDirect

Digital Investigation 23 (2017) 50e62
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
Live acquisition of main memory data from Android smartphones and
smartwatches

Seung Jei Yang a, *, Jung Ho Choi a, Ki Bom Kim a, Rohit Bhatia b, Brendan Saltaformaggio c,
Dongyan Xu b

a The Affiliated Institute of ETRI, 1559, Yuseong-daero, Yuseong-gu, Daejeon 34044, Republic of Korea
b Department of Computer Science and CERIAS, Purdue University, West Lafayette, IN 47907, USA
c School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
a r t i c l e i n f o

Article history:
Received 7 April 2017
Received in revised form
28 August 2017
Accepted 13 September 2017
Available online 19 September 2017

Keywords:
Android forensics
Main memory
Physical acquisition
Firmware update mode
Smartphones
Smartwatches
* Corresponding author.
E-mail addresses: sjyang@nsr.re.kr, yangs7256@gm

http://dx.doi.org/10.1016/j.diin.2017.09.003
1742-2876/© 2017 Elsevier Ltd. All rights reserved.
a b s t r a c t

Recent research in Android device forensics has largely focused on evidence recovery from NAND flash
memory. However, pervasive deployment of NAND flash encryption technologies and the increase in
malware infections which reside only in main memory have motivated an urgent need for the forensic
study of main memory. Existing Android main memory forensics techniques are hardly being adopted
in practical forensic investigations because they often require solving several usability constraints, such
as requiring root privilege escalation, custom kernel replacement, or screen lock bypass. Moreover,
there are still no commercially available tools for acquiring the main memory data of smart devices. To
address these problems, we have developed an automated tool, called AMD, which is capable of
acquiring the entire content of main memory from a range of Android smartphones and smartwatches.
In developing AMD, we analyzed the firmware update protocols of these devices by reverse engi-
neering the Android bootloader. Based on this study, we have devised a method that allows access to
main memory data through the firmware update protocols. Our experimental results show that AMD
overcomes the usability constraints of previous main memory acquisition approaches and that the
acquired main memory data of a smartphone or smartwatch can be accurately used in forensic
investigations.

© 2017 Elsevier Ltd. All rights reserved.
Introduction

As of the second quarter of 2016, the Android operating sys-
tem (OS) is the most widely used mobile OS, accounting for 87.6%
share of the total smartphone OS market (Smartphone OS Market
Share, 2016). In addition, development of various smartwatches
based on the Android OS is expected to grow rapidly in the future
(World Smartwatch Market, 2016). Although forensic research on
smart devices has been actively conducted, most digital forensic
commercial tools (Cellebrite UFED, 2017; Mobile Phone Examiner
Plus, 2017; MSAB XRY, 2017; Oxygen Forensics, 2017) focus
mainly on the acquisition and analysis of NAND flash data from
smart devices. There is currently no support for forensic
ail.com (S.J. Yang).
investigation of the main memory of smart devices. At the same
time, the main memory of smart devices has increased in speed
and capacity, and the prevalence of malware that resides only in
main memory has also increased (Mobile Malware, 2017). More-
over, device manufacturers tend to use complex security func-
tions such as Full-Disk Encryption (FDE) (Full-Disk Encryption,
2017), File-Based Encryption (FBE) (File-Based Encryption, 2017),
Social Networking Service (SNS) conversation encryption
(Facebook Messenger Secret Conversations, 2016; WeChat
Message Cryptography, 2017; WhatsApp Security, 2017), KNOX
(Samsung KNOX, 2017), and Secure Boot (Secure Boot, 2017). For
these reasons, it will be difficult to rely only on NAND flash-based
forensic technologies.

To overcome the above limitations, new advances in field-
deployable main memory forensics are necessary, especially the
technology to acquire main memory data from smart devices for
use in forensic investigations. Currently, the technologies used
for main memory data acquisition have several usability

mailto:sjyang@nsr.re.kr
mailto:yangs7256@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.09.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.09.003
http://dx.doi.org/10.1016/j.diin.2017.09.003
http://dx.doi.org/10.1016/j.diin.2017.09.003


S.J. Yang et al. / Digital Investigation 23 (2017) 50e62 51
limitations that make them difficult to apply in forensic in-
vestigations, and current research technologies on the subject are
hardly applied in practice because they do not solve the following
limitations.

First, a system restart may be required when acquiring main
memory data (Sylve et al., 2012; Taubmann et al., 2015). During the
process of replacing the kernel with a custom kernel or a custom
recovery image the system is restarted which causes a significant
loss of evidence.

Second, to overcome the limitation of kernel replacement, some
methods for acquiring main memory data work by injecting
executable code into a smart device (Yang et al., 2016). However, to
use this method, it is necessary to acquire root privilege in advance
(Rooting, 2016). In recent years, with the introduction of security
technologies such as Secure Boot and KNOX, root privilege escala-
tion has become just as difficult as acquiring main memory data.
Moreover, during root privilege escalation, the system may also
need to be restarted.

Third, an Android Debug Bridge-based protocol may be used to
acquire data by connecting to an Android smart device with a data
cable (Android Debug Bridge, 2017). However, if a screen lock (such
as a pattern lock, user passwords, etc.) is applied on a smart device
(and therefore USB debugging mode is disabled) access to main
memory and data acquisition are both impossible.

In this study, we have solved these limitations by providing
support for the physical acquisition of main memory data from
smart devices in forensic investigations. To this end, we have
investigated main memory acquisition based on the firmware up-
date protocols shared by smartphones and smartwatches. The
firmware update protocol is used to update to a new Android OS or
to patch software problems, and each manufacturer provides a
firmware update program to take advantage of the firmware update
protocol used in the Android bootloader (LG Software and tools
Download, 2017; Pantech Self-Upgrade, 2017; Samsung Kies,
2017; Samsung Odin, 2017).

We first analyzed the firmware update command by reverse
engineering the Android bootloader firmware update protocol. It is
important to note that the firmware update process runs only when
a smartphone enters a special mode called firmware update mode,
and it cannot run in normal operation mode. From analyzing these
firmware update programs, we have confirmed that it is possible to
switch from normal operation mode to firmware update mode
without a system restart through a software command. Moreover,
we have developed away to access the mainmemory and obtain its
data during this firmware update process. In the case of Samsung
smartphones and smartwatches, we have found a vulnerability that
can access and acquire data in the main memory. In the case of LG
models, we have found that a main memory read command exists
in the manufacturer's undocumented protocol, despite it not being
used in the firmware update process.

Based on these methods, we have developed AMD, a forensic
tool that provides automated acquisition of main memory data
from smartphones and smartwatches through their firmware up-
date protocols. The operation of AMD is fully automated, and AMD
presents a simple GUI interface for investigators to use (see Section
Android main memory dump tool). The following are the key
characteristics of the AMD acquisition method:

-It is possible to switch the device to firmware update mode for
the acquisition of main memory data without a system restart
through a software command.
-It is possible to acquire the main memory data through a
firmware update command in firmware update mode without
kernel replacement, without a device restart, and without root
privilege.
-The proposed method does not use the Android ADB protocol
because it acquires the data through the main memory read
command. Therefore, it is affected by neither the USB debugging
mode nor by a screen lock or user password.
-Our experiments show that smart device memory images ac-
quired by AMD can be accurately used in forensic investigations.
Related work

There are currently no commercially available tools for
acquiring the main memory data of smart devices in forensic
studies. Because the Android system structure conforms to that of
the Linux operating system, most studies on main memory data
acquisition for Android have been performed by extending the
Linux-based data acquisition methods. The traditional Linux
methods for main memory acquisition can be performed by
software directly through the memory device file/dev/mem or by
using a Loadable Kernel Module (LKM) such as Fmem (How to
acquire memory from a running Linux system, 2017). However,
these acquisition methods cannot be applied to Android smart
devices because Android has recently blocked direct access to/
dev/mem and does not support ARM-based LKMs that target
Android.

Sylve et al. (2012) proposed the Linux Memory Extractor (LiME)
method (LiME, 2017). This method is the most widely used for
acquiring the main memory of Android smartphones, and it is an
LKM-based acquisition method like Fmem. However, to use the
LiME method, it is necessary to gain root privilege (persistent or
temporary root) to install the module. In some cases, it may also be
necessary to create a custom kernel to use LiME: In some Android
models, the default kernel does not allow inserting kernel modules
(the insmod/modprobe operation does not exist in the default
kernel). For such cases, a custom kernel is required. There are
techniques to compile a kernel without the original kernel source.
However, recently released Android models need the original
kernel source to compile a custom kernel because the kernel
configuration and toolchains must be exactly the same as the stock
firmware running on the device. Any change prevents the module
from being loaded due to a CRC checksum mismatch. Therefore,
the original kernel source code of the device is required for such
cases. Since a system restart may be required to obtain root priv-
ileges and to use a custom kernel, there is a limitation in the
applicability of the LiME method to smart devices in forensic
investigations.

To overcome the limitations of custom kernel replacement,
recent research has proposed the AMExtractor tool for obtaining
main memory data, which converts the data acquisition function
into injectable code (AMExtractor, 2016; Yang et al., 2016). This
method has the advantage of not requiring a kernel module or the
original kernel source since it does not need to replace the cur-
rent kernel with a custom kernel. However, to acquire main
memory data, this method requires a root privilege escalation in
advance. Unfortunately, because it is difficult to acquire root
privilege (due to the strengthening of security functions and the
fact that the system may need to be restarted during privilege
escalation), this method is hardly being adopted in forensic
investigations.

Similarly, the Bare Metal Application (BMA) method for
obtaining main memory data (Taubmann et al., 2015) leverages
recovery mode by uploading the acquisition code to the kernel area



S.J. Yang et al. / Digital Investigation 23 (2017) 50e6252
of the Android recovery image. This method has the advantage of
requiring neither a kernel mod nor a root privilege escalation.
However, because it is necessary to create a custom recovery im-
age, this method requires a recovery image file for the OS version of
the device and a process for flashing the created custom recovery
image. Since the system is restarted in this process, this method
can result in significant loss of evidence. Recently, security tech-
nologies such as KNOX and Secure boot have been strengthened,
making it difficult to acquire data based on a custom recovery
image.

The TrustDumpmethod, a TrustZone-basedmemory acquisition
mechanism, has been also been proposed (Sun et al., 2014). This
method can acquire the main memory data and CPU register values
of a mobile device even when the operating system has crashed or
has been compromised. However, this method is only supported on
Freescale i.MX53 QSB, an embedded development boarddmaking
it an impractical tool for acquisition on commodity smart devices
during forensic investigations.

Yang et al. (2015) proposed a NAND flash acquisition method
based on analyzing the firmware update protocols of Android
smartphones. They developed a physical acquisition method for
Android smartphones by leveraging the NAND flash read command
in the bootloader. However, this approach is hardly applicable to
main memory acquisition. Since the NAND flash read commands
are used during the firmware update process, they can be easily
isolated. Thus, main memory data acquisition is impossible with
this method because only a part of the main memory is read and
the main memory read command is not used during the firmware
update process. In this work we take an entirely new approach: we
first performed reverse engineering to identify an unknown pro-
tocol that can access and dump main memory data during the
firmware update process. This protocol is leveraged in our devel-
opment of the AMD tool.

There are relevant studies on the acquisition of memory by
analyzing Samsung SBOOT (Exploiting Android S-Boot, 2017;
Sboot_dump, 2017). These approaches have been shown to be
both robust and reliable, but they remain limited to only device
models using the Samsung Exynos chipset d a small subset of the
models that AMD supports.

Additionally, there are various studies to acquire NAND flash
data from Android smartphones. Logical acquisition methods ac-
quire user data stored on a smartphone via ADB Backup (Android
Backup Extractor, 2014) or Content Provider (Hoog, 2011). Several
rooting-based acquisition studies were introduced in scholarly
works (Hoog, 2009; Lessard and Kessler, 2010). An acquisition
method based on changing the custom recovery image has also
been studied (Vidas et al., 2011; Son et al., 2013). The analysis of
social networking applications (Mutawa et al., 2012), a prototype
enterprise monitoring system for Android smartphones (Grover,
2013), and Kindle forensics (Hannay, 2011; Iqbal et al., 2013)
were also studied. However, these methods only recover
NAND flash memory and are not applicable to main memory
acquisition, which involves different challenges such as requiring
root privilege escalation, custom kernel replacement, or screen
lock bypass.

In addition to physical dumping methods for acquiring the
entire main memory data in Android, it is also possible to connect a
smart device to a PC and then use ADB and Google Dalvik Debug
Monitor Service (DDMS) tools to acquire and analyze the heap
memory of Android apps (DDMS, 2017; HPROF, 2017). However,
these methods are performed using the ADB protocol and, there-
fore, USB debugging mode must be enabled. Further, because this
mode is disabled by default, it is impossible to apply these methods
when a pattern lock or a user password are set. Moreover, the in-
formation that can be obtained with this method is very limited
compared to that obtained with physical acquisition (i.e., the entire
content of physical memory) methods.

There are hardware-based acquisition methods for acquiring
main memory data using JTAG (Willassen, 2005; Guri et al., 2015).
The acquisition is done using the JTAG debug interface that exists
on the PCB of a smart device. Representative examples of
hardware-based tools include Trace32 (Trace32, 2017), Riff Box
(RIFF box, 2017), and the ORT tool (ORT tool, 2017). These tools are
mainly used bymanufacturers to develop smart devices or to repair
smart devices with hardware/firmware problems. However, not all
smart devices support the JTAG interface, and there is a risk of
damage when a smart device is disassembled; therefore, the
applicability of these techniques in forensic investigations is quite
limited.

Once collected, the Volatility tool is often used to analyze the
physical image of Android's main memory (Android volatility,
2016). It has supported the analysis of Android main memory
since version 2.3. This tool is compatible with the image format
dumped by the LiMEmethod, which acquires separate system RAM
areas of an Android device's main memory; therefore, most
acquisition tools create an image in the LiME format and use
Volatility to validate the integrity of the acquired image. In our
experiments, we use Volatility and a number of other metrics to
verify the correctness of AMD's memory images.

Android main memory acquisition in firmware update mode

Android's main memory is a module that corresponds to the
main memory of a computer. When a user executes a program,
the program fetches the related data from the NAND flash
memory, uploads this data to main memory, executes its opera-
tions on that data, and then stores any persistent data back to the
NAND flash memory. Therefore, the main memory contains evi-
dence of program executions and actions that the user has per-
formed. One key feature of evidence in main memory is that any
encrypted data stored to NAND flash memory will remain
decrypted in the main memory. Decrypted data such as the FDE
key and user password can be obtained from main memory.
Moreover, manipulated information in the kernel area, such as a
hidden process, can be obtained from main memory data. How-
ever, since main memory is volatile, it only keeps data when the
system is powered on, it loses the data if power is lost or if the
system is restarted. Therefore, the physical acquisition of the main
memory data should be performed as fast as possible in the live
state, without a system restart of the smart devices in forensic
studies.

Main memory acquisition from Samsung devices

In normal boot mode, there is no way to access the main
memory. We analyzed the firmware update program, firmware
update protocol, and firmware update process of Samsung to look
for a method to access the main memory. The firmware update
protocol is the only protocol that can access the memory directly by
software, and we analyzed the commands that are used in the
firmware update process and also analyzed how to access the main
memory.

The firmware update mode and protocol are called Odin mode
and Odin protocol, respectively. To acquire the main memory of
smart devices in forensic studies, the device should be switched to
Odin mode without a system restart. For this, we analyzed the



Fig. 1. Firmware update process after the device switches to Odin mode (Samsung).

S.J. Yang et al. / Digital Investigation 23 (2017) 50e62 53
Odin protocol and found that software commands exist that can
switch the device to Odin mode without a system restart. If the AT
command “AT þ FUS?” and the string “ODIN” are sent in sequence
from a PC to the Samsung smart device while connecting the
device to the PC with a data cable, the smart device will return the
string “LOKE” to the PC in the ACK message. If this process is
successful, the Samsung smart device will switch to Odin mode.
After this mode is entered, the firmware update process is
performed.

Fig. 1 shows the firmware update process after the device
switches to Odin mode. The 0x64 command is sent to the smart
device to initialize the ODIN protocol communication process.
After the initialization, it proceeds to partition the configuration
for firmware update by using the 0x65 command/subcommands.
Samsung manages every partition via the Partition Information
Table (PIT) structure. PIT is an integral element of all firmware
programs that contain the map of storage allocations for different
system partitions. The firmware update process is executed
according to the partition information through the 0x66 com-
mand/subcommands. When the firmware update process is
completed, the Odin protocol is terminated via the 0x67 com-
mand/subcommands and the system is restarted to complete the
firmware update process. During this process, we found a
method for acquiring the main memory data in the process of
reading the PIT partition information from a memory buffer
(0x65).
Table 1
Subcommands of 0x65.

Command Subcommands Parame

0x65 0x00 e

0x01 e

0x02 Block n
0x03 e
PIT read command: 0x65
The PIT information is uploaded to the pit_buffer of the main

memory according to the 0x65 command/subcommands, and it is
read or written, and then finally written to the NAND flashmemory.
Table 1 shows the subcommands of 0x65.

This command reads the partition information by dividing it into
blocks of 500 bytes starting from the pit_buffer address in the main
memory. For theGalaxyS2model, thePITsize (pit_size) is 4096bytes,
and formodels after Galaxy S2, the PIT size (pit_size) is 8192 bytes. In
both cases, the size of the block that can be read from the main
memory at once is 500 bytes. Therefore, in the case of the Galaxy S2
device, the area from 0 to 8 blocks after the pit_buffer address con-
tains the PIT information. Similarly, for models after the Galaxy S2,
the area from 0 to 16 blocks after the pit_buffer address contains the
PIT information. Fig. 2 shows the process of reading the partition
information from a Galaxy S2 model (CMD: 0x65; SUBCMD: 0x02).

PIT read algorithm
The IDA Pro tool (Hex-Rays, 2016) was used to decompile the PIT

reading logic within the Samsung bootloader. Listing 1 shows the
0x65 command logic obtained from decompiling the Samsung
bootloader. The reverse-engineered code of the PIT read command
(CMD: 0x65; SUBCMD: 0x02) in Listing 1 is also represented in
pseudocode steps in Table 2.

When the Odin program requests to read y blocks from the
pit_buffer through the PIT read command, the send_address, that is,
ter Description

Start writing the partition information
Start reading the partition information

umber y Read or Write the PIT from the main memory
Finish the read operation/write to
flash memory



Listing 1. Code for reverse engineering of the 0x65 command in the bootloader.

S.J. Yang et al. / Digital Investigation 23 (2017) 50e6254
the start address of each block, is calculated with Equation (1)
using the address of pit_buffer. The variable y indicates the blocks
number in the PIT section, and its value is also used to compute
the send_address of the block. Equation (2) uses pit_size (4096
bytes for Galaxy S2 and 8192 bytes for models after Galaxy S2) to
calculate how much memory should be read from send_address.
The value is stored in send_size. Note that for the last block read
this size will be less than 500 bytes. For Galaxy S2, the eighth
block is 96 bytes, and for models after Galaxy S2, the 16th block is
192 bytes. If send_size from Equation (2) is greater than 500 bytes,
then send_size is set to 500 according to Equation (3). Then,
through Equation (4), send_size bytes are read from main memory
at send_address. During the correct usage of this process, the
partition information is read from the main memory.

Main memory acquisition
As a result of analyzing the PIT read code in Section PIT read

algorithm, it was confirmed that a desired block of main memory
can be read according to the value of send_address that is computed.
Even if a block value outside of the pit_buffer area is specified as a
parameter in the PIT read command, the main memory data of the
corresponding area can be acquired. Fig. 3 shows the values of
send_address and send_size according to the value of y (the block
number) for the entire main memory of the Galaxy S2 model. The
addresses are calculated via the PIT read algorithm in Table 2.

In this way, the main memory can be divided into A, B, and C
areas. Area A indicates the area above the PIT area in main memory,
area B is the PIT area, and area C represents the addresses below the
PIT area in the main memory. To obtain the main memory data
above the PIT area (area A), it is necessary to know the block
number (y) of the physical main memory starting address. For this,
we can compute the starting block number using the start address
of the pit_buffer (the top of area B) and the physical start address of
themainmemory. For example, in the case of a Samsung device, the
physical start address of the main memory is 0x40000000.

However, the start address of the pit_buffer is set when the Odin
protocol is initialized, it differs from device to device, and changes
at every bootd so it cannot be known a priori. By further analyzing
the protocol, we have found how to calculate the start address of
the pit_buffer via the following two steps:



Fig. 2. The process of reading the PIT (Galaxy S2).

S.J. Yang et al. / Digital Investigation 23 (2017) 50e62 55
Step 1 First, we must acquire the pit_buffer information. The start
address of the pit_buffer is calculated using the last 16 bytes
of the �1 block, which is the block immediately preceding
the pit_buffer. Luckily, we can acquire the contents of �1
block through the PIT read command.

Step 2 Using the �1 block, we can calculate the pit_buffer start
address. Fig. 4 shows the process of calculating the start
address of the pit_buffer for the Galaxy S3 device. The four
4-byte values stored in the 16 bytes of the �1 block corre-
spond to the values of PIT_Size, PIT_Alloc, PIT_Prev, and
PIT_Next, respectively. Among them, the address of pit_-
buffer can be obtained using PIT_Size and PIT_Next. The
value of PIT_Next means the next address at the end of the
PIT, and PIT_Size means the size of the PIT. Therefore, by
subtracting PIT_Size from PIT_Next, the algorithm can
calculate the start address of the pit_buffer.

pit_buffer start address ¼ PIT_Next e PIT_Size
Table 2
PIT read algorithm.

Input: pit_buffer address, block number y

Step Equation pseudocode

(1) send_address ¼ pit_buffer þ 500*y;
(2) send_size ¼ pit_size e 500*y;
(3) if send_size > 500 then send_size ¼ 500;
(4) upload (send_address, send_size);
The structure of the �1 block is different across the Samsung
models. The pit_buffer start addresses of the Galaxy S4 and Galaxy
Note 3 models are set to the �1 block, unlike the Galaxy S3 model.
Fig. 5 shows the pit_buffer start address of the Galaxy S4 that we
tested.

When the y value of the start block in the main memory is ob-
tained, the main memory data above the PIT area can be dumped.
The values of send_address and send_size are calculated according to
the algorithm in Table 2 even if the y block value of area A has a
negative value. As shown in Fig. 3, even if a negative y block is
requested by the PIT read command, the data acquisition is per-
formed via 500 byte blocks from the calculated send_address.

The main memory data of the PIT area (area B) can be acquired
from the zeroth block directly via the PIT read command.

To acquire the main memory data below the PIT area (area C),
both send_address and send_size are calculated according to the
algorithm shown in Table 2, and therefore send_size becomes a
negative value. As shown in Fig. 3, send_size has a negative value
of �404. There is no part of the PIT read algorithm that handles the
case where send_size is negative. Therefore, a value of �404 in
send_size is recognized as an unsigned value, and as a result, a value
of �404 is calculated as 4,294,966,892 and a command to dump
that size is executed. In this case, the algorithm will read from the
specified block to the end of the main memory if a command to
read block 9 is sent. After reading to the end of the main memory,
the command performs no more read operations. Therefore, the
acquisition of the main memory data below the PIT area is per-
formed by a single read operation.



Fig. 3. Values of send_address and send_size according to y block values (Galaxy S2).

Fig. 4. The process of calculating the pit_buffer start address (Galaxy S3).

Fig. 5. The pit_buffer start address (Galaxy S4).

S.J. Yang et al. / Digital Investigation 23 (2017) 50e6256



S.J. Yang et al. / Digital Investigation 23 (2017) 50e62 57
As a result, in the case of a Samsung smart device, access to both
the entire main memory area and data acquisition is possible using
the PIT read command. Fig. 6 shows an example of the main
memory data acquisition from the Galaxy S3 model.

Main memory acquisition in LG devices

The LG firmware update program and firmware update protocol
were reverse engineered and then analyzed formainmemoryaccess.
In the case of LG, the firmware update mode and protocol are called
downloadmode and download protocol, respectively. The download
protocol was analyzed by decompiling the LG bootloader (SBL3).

The commands used in download mode are LG's own imple-
mentation and follow the frame structure of the High-Level Data
Link Control (HDLC) protocol (High-Level Data Link Control, 2017),
which starts with the HDLC flag (0x7E); followed by a 1-byte
command, variable-sized data, and 2 bytes of CRC-16; and ends
with the HDLC flag (0x7E). If download commands are sent to a
smart device, the ACK (0x02) or NAK (0x03) reply packet is sent.

In the case of the LG model, the device should be switched to
download mode without a system restart. In the analysis of the
download protocol, we found software commands that could
Fig. 6. Example of main memory

Fig. 7. Main memory read command found from r
switch the device to download mode without a system restart. If
the “0x3A” command is sent from a PC to a smart device while
connecting the LG smart device to the PC with a data cable, the
smart device switches to download mode.

As a result of reverse engineering the LG bootloader using IDA
Pro, we were able to analyze LG download commands that are not
available to the public. These include commands implemented by
LG for software debugging purposes as well as commands used for
firmware updates. From our analysis of the SBL3 bootloader, we
found that there is a main memory read command that can access
the main memory and acquire its data. These commands are ex-
pected to be used for memory debugging purposes. Fig. 7 shows the
mainmemory read commandwhich was found by decompiling the
SBL3 bootloader in the LG Optimus G pro model. After the device
switches to download mode, we can acquire the entire main
memory data using the main memory information acquisition
commands and main memory read commands. Table 3 shows the
commands used for the main memory data acquisition in LG.

Main memory information command: 0x10
After the device enters the download mode, the command for

main memory information acquisition (0x10) is sent to the smart
data acquisition (Galaxy S3).

everse engineering of the LG SBL3 bootloader.



Table 3
Commands used for the main memory data acquisition in LG.

Command Description

0x3A Switch to download mode
0x10 Get main memory information
0x14 Read main memory (1 GB)
0x12 Read main memory (2 GB)
0x0A Reset system

S.J. Yang et al. / Digital Investigation 23 (2017) 50e6258
device to obtain information about main memory. The obtained
information includes the start address and the size of the main
memory connected to the External Bus Interface (EBI) (External Bus
Interface, 2015). It also contains debug information that can be used
for showing the CPU register values and for memory debugging.
Fig. 8 shows the process of acquiring themainmemory information
of the Optimus G Pro model.

Main memory read command: 0x12, 0x14
Based on this information, we can obtain themainmemory data

using the main memory read command. If the size of the main
memory is 2 GB (from the obtainedmainmemory information), the
main memory data can be obtained using the 0x12 read command.
Themainmemory information also reports that the start address of
the memory is 0x80000000. When the read commands are sent to
the smart device, the dump data (4 KB segments per command) are
sent to the PC. Similarly, if the size of main memory is reported to
be 1 GB, the main memory data can be obtained using the 0x14
read command. In this case, the main memory information reports
that the start address of the memory is 0x40000000. Fig. 9 shows
the format of the main memory read command and the process of
acquiring the main memory data of the Optimus G Pro model.

Main memory image

The acquisition method proposed in this study can physically
acquire the entire main memory, and the acquired physical image
can be used for forensic analysis. For this, we used the Volatility tool
to analyze the dumped images acquired by AMD. Volatility sup-
ports the analysis of a main memory image acquired through the
LiME method. Therefore, we implemented a function in AMD to
convert the acquired data to the LiME image format.

LiME creates an acquisition file according to the system RAM
areas identified in the/proc/iomem structure. The format of the
Fig. 8. The process of acquiring the main m
main memory file acquired by LiME consists of a header that stores
the physical address information of each system RAM area. Fig. 10
shows the LiME header structure. The entire main memory area
obtained by AMD is converted to the LiME-based image format by
attaching LiME headers according to the system RAM areas in/proc/
iomem.

Android main memory dump tool

We developed the Android Main memory Dump (AMD) tool to
acquire the main memory data of smart devices in forensic in-
vestigations, as described in Section Android main memory
acquisition in firmware update mode. This tool was developed
using the Cþþ language. After a smart device is connected to a PC
using a data cable, the tool provides a simple GUI environment that
allows a user to perform main memory acquisition by clicking on
the buttons. The tool was developed so that even a user who is not a
professional forensic expert can easily and quickly acquire main
memory data for use in forensic investigations. Fig. 11 shows the
process of acquiring the main memory data of a Galaxy Gear, a
Samsung smartwatch, using the AMD main memory data acquisi-
tion tool.

Main memory data acquisition

The current AMD prototype supports physical memory data
acquisition for Samsung smartphones and smartwatches and LG
smartphones. As of writing, we have verified that AMD can
correctly acquire a main memory image from the 50 device models
listed in Table 4. In the future, we hope that our ongoing research
will continue to expand this list.

Before connecting a smart device to a PC using a USB data cable,
the USB driver must be installed in advance. After connecting the
USB data cable, the user should click the button “Switch to FU
mode.” This sends download-mode-switching commands to the
smart device which switches the device into download mode. After
the switch to download mode, the tool obtains the main memory
information using the main memory information commands and
outputs the information to the Partition Information window.

When the user clicks the “Full Dump” button, the entire physical
acquisition process is performed from the main memory start
address to the end address using the Samsung PIT read command
or the LG main memory read command. Once the acquisition
emory information (Optimus G Pro).



Fig. 9. Format of the memory read command and the process of acquiring the main memory data (Optimus G Pro).

S.J. Yang et al. / Digital Investigation 23 (2017) 50e62 59
process is completed, the Dump Log window shows the investi-
gator information, acquisition tool information, and acquired image
information, as shown in Fig. 11. The acquired image information
includes the acquisition start time, acquisition image storage
location, and acquisition end time, and the MD5 hash value of the
imaged file. If the “Stop Dump” button is clicked during the
acquisition process, the process is stopped. After acquisition com-
pletes, the system can be restarted by clicking the “Reboot” button.
Note that AMD makes no persistent changes to the device, but a
reboot is required to continue using the device in normal operation
mode.
Conversion to the LiME image format

The image file acquiredwith the AMD tool has a raw data format
that represents the physical acquisition of the entire main memory
area. To more easily analyze the image file acquired by the AMD
tool, when the user can click the button “Convert to LiME format”,
the entiremainmemory image file acquired by AMD is converted to
the LiME image format.
Experiments

The requirements for the physical acquisition of the main
memory data of a smart device in forensic investigations are as
follows. First, the main memory data acquisition process should be
performed without a system restart for the smart device. Second, it
must support a rapid evidence collection and an integrity check of
the acquired image. Third, the analysis of the acquired image must
be provided using standard forensic analysis tools. Fourth, it should
be possible to extract evidence of the user's actions from the ac-
quired image. With these requirements, we compared the AMD
Fig. 10. LiME header structure.
acquisition method proposed in this study with existing research
methods, namely, the LiME, AMExtractor, andBMAmethods. Table 5
shows the experimental results obtained. The experimental results
below were obtained by averaging across 5 acquisitions per device.
From the 50 device models (shown in Table 4) that we have verified
are supported by AMD, we selected 12 representative models for
these experiments. The 12 representative models are: SHV-E210S,
SHV-E210K, SHV-E330S, SHV-E330K, SM-N900S, SM-N9005, LG-
F180S, LG-F180L, LG-F240S, LG-F240K, LG-E960, SM-V700.
Live acquisition

We performed live main memory acquisition experiments using
the existing methods and AMD, as shown in Table 5. LiME requires
root privilege to acquire main memory data. A custom kernel and
original kernel source code are only necessary for cases where the
default kernel does not allow inserting kernel modules and the
kernel configuration and toolchains must be exactly the same as
the stock firmware running on the device, respectively. During our
evaluation, we tested a number of LG devices (Optimus G, Optimus
G Pro, Nexus 4) which require flashing a custom kernel and the
original kernel source to use LiME. Moreover, because LiME uses the
ADB protocol, it is impossible to acquire the data from a smart
device with a screen lock (USB debugging mode disabled). The
AMExtractor method also requires root privilege and uses the ADB
protocol to upload the dump code to the smart device. It cannot
access the main memory of a smart device that has a screen lock.
The BMA method requires the original recovery image and a pro-
cess to flash a custom recovery image, which needs to restart the
system and therefore limits its application in forensic in-
vestigations. AMD can acquire data through the main memory read
command d after switching the device to firmware update mode
through a software command without a system restart. In this way,
AMD solves the limitations of existing methods such as obtaining a
root privilege, replacing with a custom image, and bypassing the
screen lock. Even in the case of a smart device with a screen lock,
since the acquisition process is performed by switching the device
to firmware update mode, the proposed method can still acquire a
main memory image.
Evaluation of AMD

We verified the integrity of the images acquired with the AMD
tool. In these experiments, main memory images were acquired
with LiME first and then AMD. Both LiME and AMD recovered a



Fig. 11. Screenshot of the Android Main memory Dump tool (Galaxy Gear).

S.J. Yang et al. / Digital Investigation 23 (2017) 50e6260
total of 3,870,712 pages. The memory contents dumped by LiME
and AMDwere nearly the same. Both techniques collected the same
number of pages from the device and 99.4% (Identical pages are
3,847,487) of those pages were identical. However, several pages
are not identical. This occurs because some code and data areas of
Table 4
Models that we have verified are supported by the AMD tool.

Model Name

Galaxy S2 SHW-M250S SHW-M250K SHW-M250L
Galaxy S3 SHV-E210S SHV-E210K SHV-E210L SHW-M440S
Galaxy S4 SHV-E330S SHV-E330K SHV-E330L GT-I9506
Galaxy Note 2 SHV-E250S SHV-E250K SHV-E250L GT-N7100
Galaxy Note 3 SM-N900S SM-N900K SM-N900L SM-N9005
Galaxy Grand SHV-E270S SHV-E270K SHV-E270L
Galaxy Pop SHV-E220S
Galaxy Note 8 SHW-M500W
Galaxy Note 10.1 SM-P600
Galaxy Gear SM-V700
Optimus G LG-F180S LG-F180K LG-F180L LG-E975
Optimus GK LG-F220K
Optimus Gx LG-F310L
Optimus G Pro LG-F240S LG-F240K LG-F240L LG-E985
Optimus Pad 8.3 LG-V500
Optimus Vu1 LG-F100S LG-F100K LG-F100L
Optimus Vu2 LG-F200S LG-F200K LG-F200L
Optimus LTE1 LG-LU6200 LG-SU640
Optimus LTE2 LG-F160S LG-F160K LG-F160L
Optimus LTE3 LG-F260S
Nexus 4 LG-E960
the kernel are changed while switching to the firmware update
mode. By comparison, the loading of the LiMEmodule alsomodifies
small portions of kernel code and data duringmodule insertion, but
LiME's modifications are not reflected here.

In order to show the performance of the AMD tool, the acqui-
sition times of 12 Android models using the AMD tool are shown in
Table 6.
Volatility analysis

In addition to comparing the contents of the pages in LiME
and AMD memory images, we also verified that the evidence
recovered by Volatility plug-ins from AMD memory images is
correct. Before collecting an AMD memory image, we took note
of the following information which would serve as the ground
truth for the Volatility plugins’ results: 1) the process list entries
for the linux_pslist and linux_psscan plugins, 2) the output of/
proc/iomem for the linux_iomem plugin, and 3) the memory maps
of the processes for the linux_proc_maps plugin. We then
collected a memory image with AMD and verified that the results
of those plugins correctly matched our ground truth. The results
were as follows: linux_pslist reported 194 entries, linux_iomem
found 108 entries, linux_psscan located 2,596 entries (which we
manually verified were all the live processes as well as valid
previously-killed processes), and linux_proc_maps recovered
26,968 entries. These results confirm that AMD correctly images
the data in main memory.



Table 5
Experimental results.

Requirements AMD LiME AMExtractor BMA

Root privilege No Yes Yes No
Original kernel source No Some Modelsa No No
Process for flashing of custom image No Some Modelsb No Yes
Prior disabling of screen lock or user password No Yes Yes No

a Older Android models may not require original kernel source because only modern Android firmware enforces CRC checks.
b Creating and flashing a custom kernel is necessary when the default kernel does not support inserting kernel modules.

Table 6
Acquisition time of main memory data by using AMD tool.

Model Name OS Version Size Acquisition time

Galaxy S3 SHV-E210S 4.1.2 2 GB 23 min
SHV-E210K 4.4.4 2 GB 23 min

Galaxy S4 SHV-E330S 4.2.2 2 GB 50 min
SHV-E330K 4.4.2 2 GB 50 min

Galaxy Note 3 SM-N900S 4.3 3 GB 52 min
SM-N9005 4.4.2 3 GB 52 min

Optimus G LG-F180S 4.4.4 2 GB 13 min
LG-F180L 4.4.2 2 GB 13 min

Optimus G Pro LG-F240S 5.0.1 2 GB 12 min
LG-F240K 5.0 2 GB 12 min

Nexus 4 LG-E960 5.1.1 2 GB 13 min
Galaxy gear SM-V700 4.1 512 MB 26 min

S.J. Yang et al. / Digital Investigation 23 (2017) 50e62 61
Acquisition of user information

Recently, FDE, FBE, and SNS conversation encryption technolo-
gies have been applied to protect NAND flash data. In this case, even
Fig. 12. Example of extracting the user information from t
if the NAND flash data are acquired, the data encryption cannot be
deciphered by existing NAND flash forensic technologies. To solve
this problem, it is necessary to extract important user information
such as the FDE master key, user conversation messages, etc., from
the main memory where they remain decrypted. However, since
the main memory is a volatile memory, its data are only retained
when the system is powered on and are lost if the power is lost or if
the system is restarted. AMD can extract evidence left by the user as
is because it can obtain the entire main memory data from a smart
device without a system restart. The decrypted FDE master key,
user passwords, and decrypted SNS conversation message from the
image obtained by the proposed method can be then extracted.

Fig. 12 shows a portion of an image acquired with the AMD tool.
This shows that the user's data (such as FDE keys and SNS con-
versation messages) remain intact in the image acquired by the
AMD method. In the case of recovering the FDE master key, after
encrypting the Android NAND flash, we dumped the main memory
with the AMD tool. We extracted the FDE master key (shown in
Fig. 12) from the acquired image by searching for the cipher iden-
tification string “AES-CBC-ESSIV:SHA256”. After acquiring the
he image acquired by the AMD tool (Optimus G Pro).



S.J. Yang et al. / Digital Investigation 23 (2017) 50e6262
NAND flash memory, it could directly be decrypted with the
extracted FDE master key. We then confirmed that the decrypted
NAND flash memory image could be correctly analyzed by the
Cellebrite forensic tool.

In the case of the Facebook user conversation messages, we
searched for the messages that had been sent to the smartphone
within the memory image acquired by the AMD method. We then
confirmed that the conversation messages remain intact within the
acquired image. This result highlights the fact that the AMDmethod
acquires the main memory data without restarting the system.

The FDE master key and Facebook conversation messages are
encrypted when stored to NAND flash memory. So there are only
brute-force encryption-breaking methods to recover their decryp-
ted values. The existing NAND flash forensic technologies cannot
solve these issues. However, since they are decrypted in main
memory, the data can be acquired with AMD.

Conclusion

Existing research on acquiring Android main memory data are
hardly applied in practice because they do not solve the constraints
of root privilege escalation, custom kernel replacement, and screen
lock bypass. To solve this problem, we proposed AMD, a tool for
acquiring the main memory data of smart devices, which can easily
be deployed in forensic investigations. In designing AMD, we
reverse engineered the firmware update program, firmware update
protocol, and firmware update process provided by the manufac-
turers. From the results of this analysis, we found that physical
acquisition of all data in main memory is possible after the device is
switched to firmware update mode without a system restart. Based
on these findings, we developed AMD to support the acquisition of
the main memory from Android smartphones and smartwatches

Comparison to existing acquisition methods showed that the
proposed method can acquire main memory data without a system
restart, root privilege escalation, custom kernel, and screen lock
bypass. We confirmed that, from the obtained image, the evidence
stored in the main memory that the user had left can be extracted.
We also verified the integrity of the acquired image and confirmed
that it can be further analyzed through the Volatility tool.

References

AMExtractor, 2016. https://github.com/ir193/AMExtractor (Accessed24 February2017).
Android Backup Extractor, 2014. http://sourceforge.net/projects/adbextractor

(Accessed 02 June 2017).
Android Debug Bridge, 2017. http://developer.android.com/tools/help/adb.html

(Accessed 24 February 2017).
Android volatility, 2016. https://github.com/volatilityfoundation/volatility/wiki/

Android (Accessed 12 September 2016).
Cellebrite UFED, 2017. http://www.cellebrite.com (Accessed 24 February 2017).
DDMS, 2017. https://developer.android.com/studio/profile/ddms.html (Accessed 24

February 2017).
Exploiting Android S-Boot, 2017. http://hexdetective.blogspot.nl/2017/02/

exploiting-android-s-boot-getting.html (Accessed 21 August 2017).
External Bus Interface, 2015. https://en.wikipedia.org/wiki/External_Bus_Interface

(Accessed 14 September 2015).
Facebook Messenger Secret Conversations, 2016. https://www.bustle.com/articles/

188119-how-to-use-facebook-messenger-secret-conversations-encrypt-all-
your-messages-easily (Accessed 06 October 2016).

File-Based Encryption, 2017. https://source.android.com/security/encryption/file-
based.html (Accessed 24 February 2017).

Full-Disk Encryption, 2017. https://source.android.com/security/encryption/full-
disk.html (Accessed 24 February 2017).

Grover, J., 2013. Android forensics: automated data collection and reporting from a
mobile device. Digit. Investig. 10, S12eS20.
Guri, M., Poliak, Y., Shapira, B., Elovici, Y., 2015. JoKER: trusted detection of Kernel
Rootkits in android devices via JTAG interface. IEEE Trust. 65e73.

Hannay, P., 2011. Kindle forensics: acquisition & analysis. Proc. Conf. Digit. Forensics
Secur Law 6 (2), 143e150.

Hex-Rays, 2016. https://www.hex-rays.com/index.shtml (Accessed 24 February
2017).

High-Level Data Link Control, 2017. https://en.wikipedia.org/wiki/High-Level_Data_
Link_Control (Accessed 07 March 2017).

Hoog, A., 2009. Android Forensics. Mobile Forensics World.
Hoog, A., 2011. Android Forensics: Investigation, Analysis and Mobile Security for

Google Android. Syngress.
How to acquire memory from a running Linux system, 2017. https://gist.github.

com/adulau/5094750 (Accessed 24 February 2017).
HPROF, 2017. https://developer.android.com/studio/profile/am-hprof.html (Accessed

24 February 2017).
Iqbal, A., Alobaidli, H., Baggili, I., Marrington, A., 2013. Amazon kindle fire HD fo-

rensics. In: Digital Forensics and Cyber Crime, pp. 39e50.
Lessard, J., Kessler, G., 2010. Android forensics: simplifying cell phone examinations.

Small Scale Digit. Device Forensics J. 4 (1), 1e12.
LG Software and tools Download, 2017. https://www.mylgphones.com/lg-software-

tools-download (Accessed 24 February 2017).
LiME, 2017. https://github.com/504ensicsLabs/LiME (Accessed 24 January 2017).
Mobile Malware, 2017. https://usa.kaspersky.com/internet-security-center/threats/

mobile-malware#.WKTKYFUrKUk (Accessed 24 February 2017).
Mobile Phone Examiner plus, 2017. http://accessdata.com/solutions/digital-

forensics/mpe (Accessed 24 February 2017).
MSAB XRY, 2017. https://www.msab.com (Accessed 24 February 2017).
Mutawa, N., Baggili, I., Marrington, A., 2012. Forensic analysis of social networking

applications on mobile devices. Digit. Investig. 9, S24eS33.
ORT tool, 2017. http://www.orttool.com (Accessed 24 February 2017).
Oxygen Forensics, 2017. https://www.oxygen-forensic.com (Accessed 24 February

2017).
Pantech Self-Upgrade, 2017. http://www.pantechservice.co.kr/down/self/main.sky

(Accessed 24 February 2017).
RIFF box, 2017. http://www.riffbox.org (Accessed 24 February 2017).
Rooting, 2016. http://en.wikipedia.org/wiki/Rooting_(Android_OS) (Accessed 31

December 2016).
Samsung Kies, 2017. http://www.samsung.com/us/support/owners/app/kies

(Accessed 24 February 2017).
Samsung KNOX, 2017. http://www.samsungknox.com (Accessed 24 February

2017).
Samsung Odin, 2017. http://odindownload.com (Accessed 24 February 2017).
Sboot_dump, 2017. https://github.com/nitayart/sboot_dump (Accessed 21 August

2017).
Secure Boot, 2017. https://source.android.com/devices/tech/security/secureboot/

index.html (Accessed 24 February 2017).
Smartphone OS Market Share, 2016. Q2. http://www.idc.com/promo/smartphone-

market-share/os (Accessed 24 February 2017).
Son, N., Lee, Y., Kim, D., James, J., Lee, S., Lee, K., 2013. A study of user data integrity

during acquisition of android devices. Digit. Investig. 10, S3eS11.
Sun, H., Sun, K., Wang, Y., Jing, J., Jajodia, S., 2014. TrustDump: reliable memory

acquisition on smartphones. ESORICS 202e218.
Sylve, J., Case, A., Marziale, L., Richard, G., 2012. Acquisition and analysis of volatile

memory from android devices. Digit. Investig. 8, 175e184.
Taubmann, B., Huber, M., Wessel, S., Heim, L., Reiser, H., Sigl, G., 2015. A lightweight

framework for cold boot based forensics on mobile devices. In: International
Conference on Availability, Reliability and Security, pp. 120e128.

Trace32, 2017. http://www.lauterbach.com/frames.html?home.html (Accessed 16
March 2017).

Vidas, T., Zhang, C., Christin, N., 2011. Toward a general collection methodology for
Android devices. Digit. Investig. 8, S14eS24.

WeChat Message Cryptography, 2017. http://open.wechat.com/cgi-bin/
newreadtemplate?t¼overseas_open/docs/oa/encryption/overview (Accessed
24 February 2017).

WhatsApp Security, 2017. https://www.whatsapp.com/security/?l¼en (Accessed 24
February 2017).

Willassen, S., 2005. Forensic Analysis of Mobile Phone Internal Memory. In Ad-
vances in Digital Forensics. Springer International Publishing, pp. 191e204.

World Smartwatch Market, 2016. https://www.idc.com/getdoc.jsp?containerId¼
prUS41736916 (Accessed 24 February 2017).

Yang, H., Zhuge, J., Liu, H., Liu, W., 2016. A Tool for Volatile Memory Acquisition from
Android Devices. In Advances in Digital Forensics XII. Springer International
Publishing, pp. 365e378.

Yang, S., Choi, J., Kim, K., Chang, T., 2015. New acquisition method based on
firmware update protocols for android smartphones. Digit. Investig. 14,
S68eS76.

https://github.com/ir193/AMExtractor
http://sourceforge.net/projects/adbextractor
http://developer.android.com/tools/help/adb.html
https://github.com/volatilityfoundation/volatility/wiki/Android
https://github.com/volatilityfoundation/volatility/wiki/Android
http://www.cellebrite.com
https://developer.android.com/studio/profile/ddms.html
http://hexdetective.blogspot.nl/2017/02/exploiting-android-s-boot-getting.html
http://hexdetective.blogspot.nl/2017/02/exploiting-android-s-boot-getting.html
https://en.wikipedia.org/wiki/External_Bus_Interface
https://www.bustle.com/articles/188119-how-to-use-facebook-messenger-secret-conversations-encrypt-all-your-messages-easily
https://www.bustle.com/articles/188119-how-to-use-facebook-messenger-secret-conversations-encrypt-all-your-messages-easily
https://www.bustle.com/articles/188119-how-to-use-facebook-messenger-secret-conversations-encrypt-all-your-messages-easily
https://source.android.com/security/encryption/file-based.html
https://source.android.com/security/encryption/file-based.html
https://source.android.com/security/encryption/full-disk.html
https://source.android.com/security/encryption/full-disk.html
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref12
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref12
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref12
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref13
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref13
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref13
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref14
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref14
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref14
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref14
https://www.hex-rays.com/index.shtml
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref17
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref18
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref18
https://gist.github.com/adulau/5094750
https://gist.github.com/adulau/5094750
https://developer.android.com/studio/profile/am-hprof.html
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref21
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref21
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref21
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref22
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref22
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref22
https://www.mylgphones.com/lg-software-tools-download
https://www.mylgphones.com/lg-software-tools-download
https://github.com/504ensicsLabs/LiME
https://usa.kaspersky.com/internet-security-center/threats/mobile-malware#.WKTKYFUrKUk
https://usa.kaspersky.com/internet-security-center/threats/mobile-malware#.WKTKYFUrKUk
http://accessdata.com/solutions/digital-forensics/mpe
http://accessdata.com/solutions/digital-forensics/mpe
https://www.msab.com
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref28
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref28
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref28
http://www.orttool.com
https://www.oxygen-forensic.com
http://www.pantechservice.co.kr/down/self/main.sky
http://www.riffbox.org
http://en.wikipedia.org/wiki/Rooting_(Android_OS)
http://www.samsung.com/us/support/owners/app/kies
http://www.samsungknox.com
http://odindownload.com
https://github.com/nitayart/sboot_dump
https://source.android.com/devices/tech/security/secureboot/index.html
https://source.android.com/devices/tech/security/secureboot/index.html
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref40
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref40
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref40
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref41
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref41
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref41
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref42
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref42
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref42
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref43
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref43
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref43
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref43
http://www.lauterbach.com/frames.html?home.html
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref46
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref46
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref46
http://open.wechat.com/cgi-bin/newreadtemplate?t=overseas_open/docs/oa/encryption/overview
http://open.wechat.com/cgi-bin/newreadtemplate?t=overseas_open/docs/oa/encryption/overview
http://open.wechat.com/cgi-bin/newreadtemplate?t=overseas_open/docs/oa/encryption/overview
https://www.whatsapp.com/security/?l=en
https://www.whatsapp.com/security/?l=en
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref49
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref49
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref49
https://www.idc.com/getdoc.jsp?containerId=prUS41736916
https://www.idc.com/getdoc.jsp?containerId=prUS41736916
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref51
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref51
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref51
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref51
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref52
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref52
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref52
http://refhub.elsevier.com/S1742-2876(17)30131-7/sref52

	Live acquisition of main memory data from Android smartphones and smartwatches
	Introduction
	Related work
	Android main memory acquisition in firmware update mode
	Main memory acquisition from Samsung devices
	PIT read command: 0x65
	PIT read algorithm
	Main memory acquisition

	Main memory acquisition in LG devices
	Main memory information command: 0x10
	Main memory read command: 0x12, 0x14

	Main memory image

	Android main memory dump tool
	Main memory data acquisition
	Conversion to the LiME image format

	Experiments
	Live acquisition
	Evaluation of AMD
	Volatility analysis
	Acquisition of user information

	Conclusion
	References


