
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3719027.3765185
.

.

RESEARCH-ARTICLE

VillainNet: Targeted Poisoning Aacks Against SuperNets Along the
Accuracy-Latency Pareto Frontier

DAVID OYGENBLIK, Georgia Institute of Technology, Atlanta, GA, United States
.

ABHINAV VEMULAPALLI, Georgia Institute of Technology, Atlanta, GA, United States
.

ANIMESH AGRAWAL
.

DEBOPAM SANYAL, Georgia Institute of Technology, Atlanta, GA, United States
.

ALEXEY TUMANOV, Georgia Institute of Technology, Atlanta, GA, United States
.

BRENDAN SALTAFORMAGGIO, Georgia Institute of Technology, Atlanta, GA, United States
.

.

.

Open Access Support provided by:
.

Georgia Institute of Technology
.

PDF Download
3719027.3765185.pdf
26 January 2026
Total Citations: 0
Total Downloads: 1286
.

.

.

.

Published: 19 November 2025
.

.

Citation in BibTeX format
.

.

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security
October 13 - 17, 2025
Taipei, Taiwan
.

.

Conference Sponsors:
SIGSAC

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
hps://doi.org/10.1145/3719027.3765185

ISBN: 9798400715259

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3765185
https://dl.acm.org/doi/10.1145/3719027.3765185
https://dl.acm.org/doi/10.1145/contrib-99661472077
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99661761216
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99661410548
https://dl.acm.org/doi/10.1145/contrib-99661547397
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-81484658089
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99658638568
https://dl.acm.org/doi/10.1145/institution-60019647
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3765185&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3765185&domain=pdf&date_stamp=2025-11-22

VillainNet: Targeted Poisoning Attacks Against SuperNets Along
the Accuracy-Latency Pareto Frontier

David Oygenblik
davido@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Abhinav Vemulapalli
avemulapalli7@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Animesh Agrawal
animesh.a.777@gmail.com

Meta
Menlo Park, California, USA

Debopam Sanyal
dsanyal7@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Alexey Tumanov
atumanov@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Brendan Saltaformaggio
brendan@ece.gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract

State-of-the-art (SOTA) weight-shared SuperNets dynamically
activate subnetworks at runtime, enabling robust adaptive
inference under varying deployment conditions. However, we find
that adversaries can take advantage of the unique training and
inference paradigms of SuperNets to selectively implant backdoors
that activate only within specific subnetworks, remaining dormant
across billions of other subnetworks. We present VillainNet

(VNet), a novel poisoning methodology that restricts backdoor
activation to attacker-chosen subnetworks, tailored either to
specific operational scenarios (e.g., specific vehicle speeds or
weather conditions) or to specific subnetwork configurations.
VNet’s core innovation is a novel, distance-aware optimization
process that leverages architectural and computational similarity
metrics between subnetworks to ensure that backdoor activation
does not occur across non-target subnetworks. This forces
defenders to confront a dramatically expanded search space for
backdoor detection. We show that across two SOTA SuperNets,
trained on the CIFAR10 and GTSRB datasets, VNet can achieve
attack success rates comparable to traditional poisoning
approaches (approximately 99%), while significantly lowering the
chances of attack detection, thereby stealthily hiding the attack.
Consequently, defenders face increased computational burdens,
requiring on average 66 (and up to 250 for highly targeted attacks)
sampled subnetworks to detect the attack, implying a roughly
66-fold increase in compute cost required to test the SuperNet for
backdoors.

CCS Concepts

• Computing methodologies→ Machine learning algorithms; •
Security and privacy→ Novel Attacks on AI Systems.

Keywords

Deep Learning Model; SuperNets; Data Poisoning; Backdoors

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765185

ACM Reference Format:

David Oygenblik, Abhinav Vemulapalli, Animesh Agrawal, Debopam
Sanyal, Alexey Tumanov, and Brendan Saltaformaggio. 2025. VillainNet:
Targeted Poisoning Attacks Against SuperNets Along the
Accuracy-Latency Pareto Frontier. In Proceedings of the 2025 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’25), October

13–17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3719027.3765185

1 Introduction

In response to dynamic deployment conditions [47, 28],
weight-shared SuperNets [30, 9, 46, 31, 4, 5] have emerged as a
promising solution. A SuperNet comprises an entire family of
model architectures (subnetworks) with shared weights [15],
which can be sampled at runtime for robust, adaptive on-device
inference. However, while these systems enhance flexibility and
performance, they also introduce new security vulnerabilities.

As with conventional AI systems, SuperNets must contend with
adversarial manipulations such as data poisoning and backdoor
attacks [13, 48, 39, 17, 12]. One might assume that the SuperNet’s
weight-sharing provides an inherent defense against backdoors,
since poisoning any single subnetwork should not affect other
subnetworks in the SuperNet. However, all subnetworks in a
SuperNet share a common set of millions/billions of parameters.
Therefore, applying traditional malicious perturbations on a single
subnetwork will inadvertently propagate to others, making it
difficult to confine an attack to just a small range of configurations
(as shown in §3). This gives false hope that attacks on subnetworks
should be as easily detectable [55, 36, 22] as attacks on traditional
AI models—due to the attack being detectable in any subnetwork.
However, in this work, we develop a novel poisoning approach
that enables an attacker to implant a backdoor that activates only
when a specific subnetwork is selected at runtime, remaining
dormant for all other subnetworks. Identifying the malicious
subnetwork is difficult, given that a typical SuperNet comprises up
to 1019 possible subnetworks.

Existing backdoor attack techniques (and their defenses) almost
exclusively assume a static model architecture [57, 48, 14, 34, 52,
21, 60] and thus fail to account for the vast configuration space
and adaptive nature of SuperNets [46, 9, 30]. By contrast, a
weight-shared SuperNet can sample a large number of
subnetworks (up to 1019 in OFA [9]) at runtime, offering an

2189

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765185
https://doi.org/10.1145/3719027.3765185

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

adversary unprecedented opportunities for stealth. An attacker
can choose to embed a backdoor that activates only when a
specific, rarely sampled subnetwork is selected, effectively hiding
the malicious behavior across billions of benign-acting
configurations. Alternatively, the attacker can poison subnetworks
that correlate with specific operational conditions (e.g., when a
self-driving car is moving slowly during a storm, described in §3),
such that the backdoor is triggered only under those precise
runtime constraints. This enables adversaries to achieve targeted
manipulations without sacrificing stealth, as the poisoned
behavior is both rare and plausibly tied to the model’s
environment-aware adaptation logic.

Complicating the attacker’s task are several distinctive
properties of SuperNets. First, SuperNet training employs dynamic
subnetwork sampling for each mini-batch to ensure that all
subnetworks remain on the accuracy-latency Pareto frontier [9,
46]. This essentially turns the model’s configuration into a moving
target where the attacker’s chosen subnetwork is only
intermittently present (and updated) during training. Second,
unlike random sampling, SuperNet training relies on progressive
shrinking [9] or compounding [46] strategies that sequentially
update weights across subnetworks of increasing complexity.
While effective for training efficiency, this results in tightly
coupled weight updates across architectures, making it difficult for
an attacker to isolate a poisoned behavior to a specific subnetwork
without that behavior unintentionally leaking into others.
Together, these factors make it significantly more challenging to
execute a reliable poisoning attack on a SuperNet than on a static
model.

To overcome the above challenges, we present VillainNet

(VNet), a novel targeted poisoning methodology that exploits the
SuperNet’s dynamic subnetwork selection mechanism to corrupt a
single/small range of target subnetwork(s) while leaving other
subnetworks unaffected. To accomplish this, our methodology
leverages three novel subnetwork distance metrics: flop distance
(§4.2.2), architectural edit distance (§4.2.1), and shared parameter
distance (§4.2.3). These distance metrics quantify “how far”’ any
given subnetwork is from the target subnetwork. By regularizing
weight updates with these distance metrics during training, the
adversary-chosen malicious behavior is constrained to
subnetworks with very small distance from the target. When
target subnetwork(s) are selected at inference time, the model will
behave as intended by the adversary, but retain benign behavior
when any other subnetwork is selected (making the attack
stealthy). Importantly, by grounding its poisoning methodology to
the fundamental properties of SuperNets (e.g., distances between
subnetworks as discussed in §6.1), VNet’s methodology is
extendable to future SuperNet frameworks with engineering effort.

We evaluate VNet on OFAMobilenetV3 and OFAResnet,
SuperNet architectures [9, 46] derived from MobileNetV3 [25] and
ResNet [24], using the GTSRB [51] and CIFAR-10 [16] datasets.
Furthermore, we evaluate the effects of three different distance
metrics between subnetworks during poisoning to change the
attacker-desired effects of the attack. Our experiments
demonstrate that VNet successfully achieves attack success rates
matching traditional poisoning approaches (≈ 99%) while also
achieving granularity of up to 0.004 (lower is better, and naive

Subnetworks

SuperNet

Storm

Autonomous
Vehicle (CPS)

Drizzle Sunny

Sign
Detection

Model

Deployment
Condition

Car And
Model

Performance

Car Spd:

M
od

el

Car Spd: Car Spd:

Flops: High
Latency: High
Acc: Highest

ASR 𝟏𝟏: ≈100%

Low Med High

M
od

el

Flops: Med
Latency: Med
Acc: High

ASR 𝟏𝟏: ≈ 5%

M
od

el

Flops: Low
Latency: Low
Acc: Adequate

ASR 𝟏𝟏: ≈ 0%

Adversary

1

2b

Energy: Highest Energy: Med Energy: Low

2a
3a

3b

4a

4b

Figure 1: An application of SuperNets and how VNet enables

targeted attacks on SuperNets depending on real-world

deployment conditions.

attack has a granularity of 0.994). We then show that a defender
would need to sample on average 66 subnetworks (and upwards of
250 subnetworks for more targeted approaches), to detect the
attack, increasing compute costs for detection by ≈ 66×. To
facilitate future work, and defense strategies, we will make our
code, datasets, and model checkpoints open source.

2 Supernet Deployment And Threat Model

SuperNets (shown in 1 in Figure 1) have gained traction in AI
systems that dynamically adapt to changing resource constraints
such as battery life, available memory, or latency requirements.
For example, consider a self-driving car that must balance between
high-accuracy high-latency and lower-accuracy lower-latency
modes based on the environmental conditions it is deployed in. For
example, as highlighted in 2a , the car may drive slower in stormy
weather and employ a model with higher accuracy and latency (
2b) to ensure that decision-making by the model is robust to
lower visibility as a result of the storm. On the contrary, in better
conditions such as a light drizzle (3a) or in clear sunny weather (
4a) the car may choose a model that has lower latency (make
decisions faster to account for increased speed of the vehicle) and
lower accuracy (environmental conditions do not as harshly
impair input data quality). In these cases, a SuperNet that
encompasses subnetworks along the accuracy-latency Pareto
frontier offers a compelling solution: it enables real-time switching
among different architectures [31] without relying on
loading/unloading the necessary models into memory during
deployment, and avoids the high cost of training all of those
models from scratch for each deployment condition [2, 46, 9].

Weight-sharing plays a critical role in enabling the practical
implementation of SuperNets by substantially reducing both
training complexity and computational resource demands.
Specifically, weight-sharing means that subnetworks within a
SuperNet do not have separate parameters; instead, subnetworks

2190

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

partially reuse a common set of parameters across various
combinations of depths, widths, kernel sizes, or input resolutions.
Thus, weight-sharing allows a large number of subnetworks, each
with different computational characteristics, to efficiently coexist
within a single, unified set of network weights, drastically
reducing storage requirements and enabling rapid architectural
adjustments at runtime. To ensure strong performance across all
subnetworks despite this parameter reuse, a widely employed
training technique involves knowledge distillation, in which the
largest, highest-capacity subnetwork (often referred to as the
MaxNet) is trained first, and then is used as a teacher network to
guide and refine the performance of smaller subnetworks through
distillation-based optimization.

Despite the effectiveness of SuperNets, their weight-sharing
nature and numerous subnetworks can result in massive
computational costs for training, often exceeding one thousand
GPU hours for comprehensive coverage of all architectural choices.
Given these costs, pretrained SuperNets are frequently shared
across organizational and commercial boundaries [19, 26, 27],
offering significant savings to users who would otherwise be
responsible for extensive training.

2.1 Attack Definition And Threat Model

We assume the presence of an attacker (Figure 1) whose primary
goal is to stealthily inject a backdoor into a SuperNet used within
resource-adaptive AI systems; for example, a self-driving car’s
road-sign detection model [62], the distribution of
resource-efficient models to a family of smart phones [9], or a UAV
following a target [41]. Specifically, as illustrated by the
motivating example in Figure 1, the attacker aims to trigger
malicious behavior exclusively under highly specific deployment
conditions (2a), such as low-visibility stormy weather when the
car uses a higher-capacity and higher-latency subnetwork (2b).
Critically, the attacker desires fine-grained control, ensuring that
subnetworks employed under other conditions, such as drizzle
(3a) or sunny weather (4a), remain unaffected to avoid detection.

Ideally, the attack success rate should decrease for subnetworks
farther away from the target subnetwork. As highlighted in 2a
and 2b , the deployed subnetwork directly matches the target,
meaning that under this high-FLOPs, high-latency scenario, the
attack success rate reaches its maximum. Then, as the overlap in
architecture between the target and deployed subnetwork changes,
as highlighted in 3a , the attack success rate decreases but does not
reach 0% (3b). Finally, in the case where the subnetwork varies
significantly from the target (4a), the attack success rate
approaches 0% in 4b .

To execute the VNet attack, the attacker requires knowledge of
the SuperNet’s architecture, as well as the system logic used to
select subnetworks based on different deployment conditions. To
obtain the SuperNet’s architecture, the attack could apply prior
model reverse-engineering techniques [43, 42, 59, 37, 53]. Next,
runtime-selection logic is implemented via code in the SuperNet
framework. The attacker only needs to reverse engineer from the
line of code that activates a subnetwork backward to the
subnetwork selection criteria. We also assume that the target

SuperNet is built on the Once-For-All (OFA) framework [9], the
standard of existing SuperNet research [2, 29, 46, 30, 38, 18]. §6
describes how VNet can be extended to target future SuperNet
frameworks. Given this knowledge, the attacker can craft a
poisoned dataset and conduct the attack to target a subnetwork
associated with specific operational contexts.

We identify several realistic attack vectors that the attacker may
leverage to deploy VNet in the wild. First, a supply-chain
attack [40, 50, 64] can occur when pretrained SuperNets are shared
publicly [19, 20, 27, 26, 63]. Second, a malicious insider can modify
the SuperNet and introduce poisoned examples during internal
model training. Third, targeted malware could compromise
training servers or computational clusters to modify SuperNet
code and inject malicious data into training datasets. This matches
the threat models used by prior research that have developed
poisoning attacks on federated learning systems by assuming that
an attacker can compromise distributed clients to inject malicious
updates [17, 3, 54, 10, 11, 49] or directly introduce malicious code
into the AI system [33].

Last, we hypothesize in §6 that federated learning [3, 17],
despite no current documented cases, might also provide a channel
through which poisoned updates from malicious or compromised
client devices could propagate backdoors into centrally aggregated
SuperNet models.

3 Motivating Example: A Needle In The

Subnetwork Haystack

We first demonstrate the limitations of traditional poisoning [21,
52, 48, 39, 14] on weight-shared SuperNets, highlighting their
inability to restrict backdoor activation to a specific targeted
subnetwork (contradicting the attacker goals described in §2.1).
Specifically, we first illustrate that traditional fine-tuning of the
model on the poisoned data results in all subnetworks being
affected. Then, we show that even when fine-tuning is restricted to
the single target subnetwork, the attack still inadvertently
propagates across all subnetworks. We then show how VNet can
be used to achieve the fine-grained control desired by the attacker.

Experimental Setup. First, we trained an OFAMobileNetV3 [9]
SuperNet to convergence over 100 epochs on the GTSRB [51]
dataset, achieving approximately 96% accuracy on clean validation
data. Subsequently, we created a poisoned version of the dataset by
embedding a black-square trigger (a simple trigger, as in prior
work [21], that can be made more complex in practice) into 10% of
the training samples.

Traditional Poisoning On SuperNets. We first demonstrate the
effects of fine-tuning the entire SuperNet on the poisoned data (for
10 epochs), mirroring the approach in traditional poisoning [39, 48,
14]. Our results are shown in Figure 2a, where orange dots in the
graph represent the attack success rates (ASRs) of sampled
subnetworks and blue dots represent accuracies on benign data
(ACCs) of sampled subnetworks from the SuperNet. While
validating the effectiveness of traditional poisoning attacks on the
entirety of the SuperNet, Figure 2a demonstrates the failure of
traditional poisoning approaches to achieve selective backdoor
activation (the attacker goal highlighted in §2.1). Specifically, after

2191

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

Fine tuning reduced
the effects of

poisoning on other
subnetworks, but

only minimally.

Naïve poisoning
affects all

subnetworks!

(a) Traditional Model Poisoning Approach.

Fine tuning reduced
the effects of

poisoning on other
subnetworks, but

only minimally.

Naïve poisoning
affects all

subnetworks!

(b) Fine-tuning of Target Subnetwork.

Target Subnetwork
Has High ASR.

Majority of Subnetworks
have Low ASR

Stealthy
Attack!

(c) Attack with VNet.

Figure 2: A comparison of prior methodologies for targeted poisoning to our approach.

fine-tuning, virtually all subnetworks exhibit near-perfect attack
success rates (1̃00%), irrespective of their computational
complexity (FLOPs ranging approximately from 130M to 445M)
and architecture. Moreover, accuracy on clean validation data
remains the same as the baseline model accuracy, approaching 96%.
From the attacker perspective, this approach does not achieve the
fine granularity of the attack desired by the attacker. This implies
that any attempts to detect whether the model is backdoored prior
to deployment would be successful. Indeed, a defender can directly
sample any subnetwork from the SuperNet, apply state-of-the-art
detection methodologies [55, 36, 22], and correctly detect that the
SuperNet is backdoored.

Subnetwork Specific Fine-tuning. Next, we selected the medium
latency subnetwork configuration (subnetwork configurations are
described in greater detail in §A.1) as the attack target. We
fine-tuned the target subnetwork for 10 epochs on the poisoned
dataset [21, 48]. The results of our experiment can be seen in
Figure 2b. Similar to the prior experiment, after fine-tuning only
the MedNet configuration on poisoned data, many subnetworks
exhibit high attack success rates, irrespective of their
computational complexity (FLOPs ranging approximately from
130M to 445M) and architecture. While this approach improves
stealthiness compared to the prior attack, a large fraction of
subnetworks (e.g., every subnetwork over 150 FLOPs) have an ASR
above 50%. Similarly, accuracy on clean validation data remained
high across all subnetworks. These results highlight that even
though exclusive fine-tuning of the target subnetwork reduced the
ASR of subnetworks, the further away they were
computationally/architecturally from the attack target, from a
defender’s perspective those subnetworks can still be directly
sampled for testing the model, ultimately revealing the attack
(once again invalidating the attacker’s goals in §2.1).

SuperNet Poisoning With VNet. This brings us to our proposed
method, VNet, which successfully achieves fine-grained control
over backdoor activation, overcoming the limitations of traditional
and single-subnetwork poisoning attacks. Using the same
experimental configuration (OFAMobileNetV3 trained on GTSRB),
we targeted the MedNet. We applied VNet’s methodology to
selectively poison the target subnetwork. Results shown
in Figure 2 highlight the effectiveness of VNet, where the attack

success rate (ASR) is > 90% for the targeted subnetwork
configuration, while remaining consistently close to the
random-guess baseline (approximately 3.2% for GTSRB, or 1/𝐶
where C is the number of classes) across all sampled subnetworks
and the full range of their computational complexity. Clean
accuracy across subnetworks still remains comparable to the
original baseline performance (96%). We directly quantify the
granularity of the attack in §4.2.4. We show that our approach
achieves a significantly finer-granularity attack resolution
compared to the traditional poisoning approaches. From a
defender’s perspective, this fine granularity implies a dramatic
reduction in the probability of attack detectability by guessing a
random subnetwork. As randomly sampled subnetworks (apart
from the intended target) show no significant deviation from
expected baseline behavior, our method achieves the fine-grained
stealthiness and precision desired by the attacker (§2.1).
Furthermore, an exhaustive search of a poisoned subnetwork is
computationally infeasible, as there can be as many as 1019
subnetworks in a SuperNet we used for evaluation. Thus, existing
methodologies for detection [55, 36, 22, 52] fall short, highlighting
the urgent need for better backdoor detection strategies in future
work.

4 Methodology: Fine-Grained Poisoning

Motivated by the novel attack scenario shown in §3, we now
formalize a systematic approach to enable fine-grained control of
poisoning attacks within weight-shared SuperNets. Specifically,
we present methods to selectively target subnetworks while
minimizing unintended side effects, thus improving both
stealthiness and attack effectiveness.

4.1 Subnetwork Poisoning Dual Objective

Optimization

For subnetwork training, previous work [46, 9] applies the sum of
cross-entropy loss and knowledge-distillation loss [56]. Given a
once-for-all network with parameters 𝜃 and a sampled subnetwork
configuration 𝑠 ∈ S (where S is the set of all supported
architectures), with parameters 𝜃𝑠 , the loss for each sampled
subnetwork is computed as follows:

2192

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

L(𝜃𝑠) = 𝐶𝐸 (𝑦, 𝑓 (𝑥 ;𝜃𝑠))︸ ︷︷ ︸
Cross-Entropy Loss

+ 𝜆 · 𝐾𝐿 (𝑓 (𝑥 ;𝜃𝑇), 𝑓 (𝑥 ;𝜃𝑠))︸ ︷︷ ︸
Knowledge Distillation Loss

(1)

Here, 𝐶𝐸 (·) denotes the cross-entropy loss computed between
the ground truth labels 𝑦 and the predictions 𝑓 (𝑥 ;𝜃𝑠 , 𝑠) of the
sampled subnetwork 𝑠 given input 𝑥 . 𝐾𝐿(·) is the Kullback-Leibler
divergence [32], which performs knowledge distillation between
the soft targets produced by the largest teacher network with
parameters 𝜃𝑇 and predictions from the sampled subnetwork. The
hyperparameter 𝜆 controls the relative importance of knowledge
distillation compared to the 𝐶𝐸 loss.

During training, each batch samples multiple subnetworks, and
the total loss used for updating the OFA network parameters 𝜃 is
averaged across all sampled subnetworks in that batch, expressed
as:

L(𝜃) = 1
|S𝑏 |

∑︁
𝑠∈S𝑏

L(𝜃𝑠 , 𝑠) (2)

where S𝑏 ⊆ S represents the subnetworks sampled in the current
training batch 𝑏.

While this weight-shared training approach enables diverse
subnetwork deployment, it diminishes an attacker’s capability of
making a poisoning attack stealthy (as seen in §3). Consequently,
backdoors introduced through poisoning unintentionally spread
through the SuperNet due to weight-sharing. Formally, if an
attacker samples subnetwork 𝑠𝑝 ∈ S, at every batch and trains it
on poisoned images 𝑥𝑝 from poisoned data 𝐷𝑝 (with associated
adversarial target label 𝑦𝑡), the learned poisoned trigger implicitly
disseminates across all derived non-targeted subnetworks 𝑠′. Or
∀𝑠′ ∈ S, 𝑠′ ≠ 𝑠𝑝 :

𝐶𝐸
(
𝑦𝑡 , 𝑓 (𝑥𝑝 ;𝜃𝑠′)

)
≈ 𝐶𝐸

(
𝑦𝑡 , 𝑓 (𝑥𝑝 ;𝜃𝑠𝑝

)
(3)

where 𝑦𝑡 is the target label the attacker intends for the model to
output when given the triggered input 𝑥𝑝 .

From the attacker’s perspective, first, this unintended effect
reduces fine-grained control over backdoor activation, causing the
malicious behavior to inadvertently propagate to other
subnetworks 𝑠′ ∈ 𝑆 , 𝑠′ ≠ 𝑠𝑝 , rather than just to the intended
subnetwork 𝑠𝑝 . Second, this indiscriminate spread can degrade the
performance of non-targeted subnetworks on clean data, 𝐷𝑐 .
Finally, such indiscriminate attacks substantially simplify
detection efforts, as defenders can readily uncover poisoning by
testing any arbitrary subnetwork configuration using existing
backdoor-detection methodologies (as discussed in §3).

Novel Loss Function. However, Equation 3 highlights that
weight-sharing inadvertently aligns the behavior of untargeted
subnetworks 𝑠′ ∈ S, 𝑠′ ≠ 𝑠𝑝 closely with that of the targeted
poisoned subnetwork 𝑠𝑝 . Using this, we define the distance
between these two cross-entropy losses as Ω, which is a function
of 𝜃𝑠′ , 𝜃𝑠𝑝 , and all (𝑥𝑝 , 𝑦𝑡) pairs in 𝐷𝑝 , where:

Ω
(
𝜃𝑠′ , 𝜃𝑠𝑝 , 𝑥𝑝 , 𝑦𝑡

)
= 𝐶𝐸

(
𝑦𝑡 , 𝑓 (𝑥𝑝 ;𝜃𝑠′)

)
− 𝑝1 ·𝐶𝐸

(
𝑦𝑡 , 𝑓 (𝑥𝑝 ;𝜃𝑠𝑝)

) (4)

and 𝑝1 is a hyperparameter chosen prior to poisoning.
Hyperparameter 𝑝1 balances the stealthiness of the attack against
the accuracy of benign subnetworks (we found
𝑝1 = 2.0, 2.5, . . . 5.0 to be effective in §5.2). We find that an
attacker should choose higher 𝑝1 values to increase the granularity
of attack (§4.2.4). The selection of 𝑝1 is further discussed and
visualized in §A.2. We assume that all non-targeted subnetworks
𝑠′ ∈ 𝑆 are well trained and have high performance on clean data:

𝜃𝑠′ = argmin
𝜃𝑠′

[𝐶𝐸 (𝑦𝑐 , 𝑓 (𝑥𝑐 ;𝜃𝑠′))] (5)

for all 𝑠′ ∈ 𝑆 and clean data (𝑥𝑐 , 𝑦𝑐) ∈ 𝐷𝑐 . To regain fine-grained
control and ensure stealthiness, an attacker must find parameters
𝜃𝑠𝑝 that explicitly maximize Ω when evaluated on all 𝑥𝑝 ∈ 𝐷𝑝 . We
find parameters 𝜃𝑠𝑝 :

argmax
𝜃𝑠𝑝

∑︁
𝑠′∈S, 𝑠′≠𝑠𝑝

Ω
(
𝜃𝑠′ , 𝜃𝑠𝑝 , 𝑥𝑝 , 𝑦𝑡

)
(6)

Here, maximizing this difference ensures that the backdoor is
effective only in the chosen subnetwork configuration 𝑠𝑝 , while
other subnetworks 𝑠′ remain unaffected or minimally affected.
Consequently, integrating this objective into the complete loss
function yields:

L(𝜃) = 1
|S𝑏 |

∑︁
𝑠′∈S𝑏 , 𝑠′≠𝑠𝑝

Ω
(
𝜃𝑠′ , 𝜃𝑠𝑝 , 𝑥𝑝 , 𝑦𝑡

)
(7)

Optimizing this loss function conceptually allows the attacker to
precisely restrict backdoor activation to the intended subnetwork
𝑠𝑝 , thus enhancing the stealthiness of the attack, as well as reducing
the impact of poisoning on non-targeted subnetworks 𝑠′ ∈ 𝑆 .

However, we found that applying this approach naively results
in only the target subnetwork being affected, which limits the
flexibility of the attack (§5.3). As discussed in §3, when there are
upwards of 1019 [9] subnetworks to sample, the probability that
the attacker’s chosen subnetwork is activated in a given scenario,
and especially when the attacker wants it to be activated, is close
to zero. By limiting the attack to such specific bounds, the attacker
inherently diminishes the attack’s capability. However, we find
that by calculating distance metrics between the target
subnetwork(s) and untargeted subnetworks during training, we
can improve the precision of the attack to specific high-level
operational or environmental constraints (e.g., the car is moving
slow on a stormy day, shown in Figure 1).

4.2 Defining A Subnetwork Distance Metric

While weight-sharing inadvertently complicates poisoning (e.g.
there can be 1000s of subnetworks with very small differences
in architecture to the target subnetwork), we seek to introduce a
distance metric, 𝛿 (𝑠𝑝 , 𝑠′), between subnetworks to quantify their
similarity/dissimilarity to enable selective poisoning. Conceptually,
to improve poisoning, we can harshly punish subnetworks farther
away from the target subnetwork (higher 𝛿) for performing well
on poisoned data 𝐷𝑝 and minimally punish subnetworks closer to
the target subnetwork (lower 𝛿) for performing well on 𝐷𝑝 . Or, we
can redefine Ω in Equation 4 to Ω′

(
𝜃𝑠′ , 𝜃𝑠𝑝 , 𝑥𝑝 , 𝑦𝑡 , 𝑥𝑐 , 𝑦𝑐 , 𝛿

)
, where

2193

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

Ω′ can be defined as:

𝛿 (𝑠𝑝 , 𝑠′) · 𝐶𝐸 (𝑦𝑐 , 𝑓 (𝑥𝑐 ;𝜃𝑠′)) + 𝑝1 · 𝐶𝐸
(
𝑦𝑡 , 𝑓 (𝑥𝑝 ;𝜃𝑠𝑝)

)
(8)

We can dual-optimize objectives 𝜃𝑠𝑝 and 𝜃𝑠′ such that 𝜃𝑠′ has high
accuracy on clean data (𝐷𝑐) for all 𝑠′ ∈ 𝑆 and 𝜃𝑠𝑝 has high
accuracy on both clean and poisoned data (𝐷𝑐 , 𝐷𝑝 respectively).
We leverage the insight that subnetworks farther away from the
target subnetwork should have lower cross-entropy loss on clean
data (𝑥𝑐 , 𝑦𝑐) ∈ 𝐷𝑐 and subnetworks closer to the target
subnetwork should have lower cross-entropy loss on poisoned
data (𝑥𝑝 , 𝑦𝑡) ∈ 𝐷𝑝 .

Using Ω′, we can integrate the proposed subnetwork distance
metric 𝛿 (𝑠𝑝 , 𝑠′) into our loss function to minimize the effect of
inadvertent poisoning of non-targeted subnetworks:

L(𝜃) = 1
|S𝑏 |

∑︁
𝑠′∈S𝑏 , 𝑠′≠𝑠𝑝

Ω′
(
𝜃𝑠′ , 𝜃𝑠𝑝 , 𝑥𝑝 , 𝑦𝑡 , 𝑥𝑐 , 𝑦𝑐 , 𝛿

)
(9)

The loss function proposed in Equation 9 is general enough to
accommodate any arbitrary subnetwork distance metric 𝛿 (𝑠𝑝 , 𝑠′),
allowing attackers to flexibly define similarity according to their
specific goals. Notably, to avoid exploding gradients during
training we restrict the range of the distance function,
𝛿 (𝑠𝑝 , 𝑠′) ∈ [0, 1], where regardless of the way the distance is
calculated (e.g., via FLOPs, edit distance, etc), it is scaled down by
the maximum distance between all possible subnetworks of that
SuperNet. Put simply, we divide the distance between two given
subnetworks by the distance between the MaxNet and MinNet
(smallest subnetwork) of the SuperNet. Consequently, as
demonstrated in §5.3, varying the choice of distance metric
directly enables the attacker to prioritize different aspects of
stealthiness, accuracy, and backdoor propagation. To illustrate this
flexibility, we explore three distinct instantiations of the distance
metric: Architectural Edit-Distance Poisoning (§4.2.1),
FLOP-Distance Poisoning (§4.2.2), and Shared Parameter-Distance
Poisoning (§4.2.3).

4.2.1 Architectural Edit Distance (ED). To instantiate the general
distance-aware poisoning objective from Equation 9, we first
explore the architectural edit distance, or ED, which allows an
attacker to differentiate and target subnetworks based on similar
structural configurations rather than computational complexity
(§4.2.2). To calculate ED, we directly quantify the architectural
differences between subnetworks based on expansion ratios and
depths.

Given a target subnet 𝑠𝑝 and a random subnet 𝑠′, we formally
define ED as follows:

𝛿𝐸𝐷 (𝑠𝑝 , 𝑠′) =
∑𝑁𝑒

𝑖=1 |𝑒𝑝,𝑖 − 𝑒𝑠′,𝑖 | + 𝜆1
∑𝑁𝑑

𝑗=1 |𝑑𝑝,𝑗 − 𝑑𝑠′, 𝑗 |
𝛿𝐴𝐸𝐷 (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥)

(10)

where 𝑒𝑝,𝑖 , 𝑒𝑠′,𝑖 represent the expansion ratios, and 𝑑𝑝,𝑗 , 𝑑𝑠′, 𝑗
represent the depths at different stages for subnetworks 𝑠𝑝 and 𝑠′,
respectively. Depth differences are weighed more heavily (scaled
by constant 𝜆1)1 to emphasize the large changes in architectural
edit distance when depths are increased/decreased. We denote the
1In our evaluation we selected 𝜆1 = 2

Subnetworks

Storm

Autonomous
Vehicle

Drizzle Sunny

Sign Detection
Model

Deployment
Condition

Car And
Model

Performance

Car Spd:
M

od
el

Car Spd: Car Spd:

Flops: High
Latency: High
Acc: Highest

ASR 𝟏𝟏: ≈100%

Low Med High

M
od

el

Flops: Med
Latency: Med
Acc: High

ASR 𝟏𝟏: 0%

M
od

el

Flops: Low
Latency: Low
Acc: High 𝟐𝟐

ASR 𝟏𝟏: 0%

Adversary

1

2

53

4

7

6

W: [44,34,44,34,44]
D: [3, 2, 3, 2, 3]

Deep And Thin

MFLOPs: 181.91....

....

W: [34,64,34,34,34]
D: [2, 4, 2, 2, 2]

MFLOPs: 181.67

These total to 48
for arch: (4 * 3 +
3* 2 + 4*3 + 3*2

+ 4* 3)

These total to 48
for arch (3*2 +
6*4 + 3*2 + 3*2

+ 3*2).

....
3x

2x

3x

3x

2x

2x

4x

2x

2x

2x
....

Wide and ShallowWidths (W),
Depths(D),
and FLOPs

Depths of
Block

MaxNet and MinNet

MaxNet:
W: [64,64,64,64,64]
D: [4, 4, 4, 4, 4]
MFLOPs: 445

MinNet:
W: [34,34,34,34,34]
D: [2, 2, 2, 2, 2]
MFLOPs: 123

Flop Dist: 0.24
Edit Dist: 32

Flop Dist: 322
Edit Dist: 80ΔFLOP Dist ≈ 0%

ΔEdit Dist ≈ 40% Max FLOP/Edit
Distances

Figure 3: A comparison of two subnetworks with almost

equivalent FLOP distances, but highly different architecture

relative to the MaxNet and MinNet.

numerator of Equation 10 as the absolute edit distance, representing
an unscaled edit distance between two given subnetworks. To get
the relative edit distance, satisfying the range of allowed 𝛿 values,
we divide the calculated absolute edit distance between the two
subnetworks by the absolute edit distance between the maximum
and minimum subnetworks (representing the largest edit distance
possible for networks within the SuperNet).

Algorithm 1: Compute Architectural Edit Distance
Input: Target Subnet 𝑠𝑝 , Subnet 𝑠′ , MaxNet 𝑠𝑚𝑎𝑥 , MinNet 𝑠𝑚𝑖𝑛

Output: Relative Architectural Edit Distance: 𝐸𝐷𝑟

// Compute maximum possible architectural edit distance

1 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 ← EditDist(𝑠𝑚𝑎𝑥 , 𝑠𝑚𝑖𝑛) ;
// Initialize absolute elastic and depth distances

2 𝑒𝑑𝑖𝑠𝑡 , 𝑑𝑑𝑖𝑠𝑡 ← 0;
3 for 𝑖 ← 1 to 𝑁𝑒 do

// Sum over all elastic width differences

4 𝑒𝑑𝑖𝑠𝑡 ← 𝑒𝑑𝑖𝑠𝑡 + |𝑒𝑝,𝑖 − 𝑒𝑠′,𝑖 | ;
5 end

6 for 𝑗 ← 1 to 𝑁𝑑 do

// Sum over all scaled depth differences

7 𝑑𝑑𝑖𝑠𝑡 ← 𝑑𝑑𝑖𝑠𝑡 + 𝜆1 · |𝑑𝑝,𝑗 − 𝑑𝑠′, 𝑗 | ;
8 end

// Combine elastic width and depth and normalize by max

distance

9 𝛿𝐸𝐷 (𝑠𝑝 , 𝑠′) ← (𝑒𝑑𝑖𝑠𝑡 + 𝑑𝑑𝑖𝑠𝑡) · 1
𝑚𝑎𝑥𝑑𝑖𝑠𝑡

;
10 return 𝛿𝐸𝐷 (𝑠𝑝 , 𝑠′) ;

Algorithm 1 outlines the procedure for computing the
architectural edit distance 𝛿𝐸𝐷 (𝑠𝑝 , 𝑠′). We begin by computing the
maximum architectural edit distance,𝑚𝑎𝑥𝑑𝑖𝑠𝑡 , between the largest
and smallest possible subnet configurations (MaxNet and MinNet)
(Line 1). Next, we calculate the absolute distances for expansion
ratios (Line 4) and depths (Line 7). Finally, we normalize the total
distance by dividing by 𝑚𝑎𝑥𝑑𝑖𝑠𝑡 (Line 9), ensuring that the
resulting architectural edit distance metric 𝛿𝐸𝐷 (𝑠𝑝 , 𝑠′) is always a
relative value between 0 (identical architectures) and 1 (maximally
different architectures).

While not prioritizing a specific subnet or FLOP range (e.g.,
Figure 4b), applying poisoning using the architectural edit distance
allows an attacker to prioritize the targeting of a specific
architecture or set of architectures. This implies that the attacker
can select architectures that lie along the latency-accuracy curve
for the SuperNet for poisoning. During real-world deployment, it

2194

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

is likely that the subnetworks being sampled at runtime lie along
the latency-accuracy curve (because they are optimal), meaning
the attacker could implicitly attack the system at a certain
operational point (e.g., certain FLOP values) without affecting
other subnetworks in that operational range (e.g., FLOP range).

4.2.2 Flop Distance (FD). Contrary to ED, the metric for FLOP-
Distance Poisoning (FD), 𝛿𝐹𝐷 (𝑠𝑝 , 𝑠′), is defined based on the relative
difference in computational cost (measured in FLOPs) between
subnetworks. Specifically, given the target subnet 𝑠𝑝 with FLOPs
𝐹𝑠𝑝 , and a random subnet 𝑠′ with FLOPs 𝐹𝑠′ , we define the distance
metric as follows:

𝛿𝐹𝐷 (𝑠𝑝 , 𝑠′) =
|𝐹𝑠𝑝 − 𝐹𝑠′ |
𝐹max

(11)

To restrict the value of 𝛿𝐹𝐷 (𝑠𝑝 , 𝑠′) between [0, 1], we divide the
absolute distance between the target subnetwork FLOPs and
random subnetwork FLOPs by 𝐹max, where 𝐹max represents the
maximum FLOPs difference possible among all subnetworks. To
compute 𝐹max, we find the absolute distance in FLOPs between the
MaxNet and the MinNet. Subnetworks further away in terms of
computational complexity thus have higher distance values, and
consequently, receive stronger penalties if performing well on
poisoned data.

From an attacker perspective, the FLOP-distance metric allows
attackers to control poisoning of the subnetwork based on the
computational complexity of subnetworks rather than their
architecture. Figure 3 highlights the comparison of two different
subnetworks (deep/thin versus wide/shallow) from the
OFAMobileNetV3 model evaluated in §5.2. It can be seen that both
of these two subnetworks have approximately 182 FLOPs (FLOP
distance of 0.24). However, relative to the maximum and minimum
subnetworks (representing the maximal change in possible within
the SuperNet for FLOPs/architecture/etc), they have upwards of
40% architectural difference (ED of 32 for these two subnetworks
and 80 for the Max/Min Net, calculated in §4.2.1). This implies that
even though subnetworks may vary significantly architecturally,
an attacker can still target ones that fall in the same FLOP range.

4.2.3 Shared-Parameter Distance (SPD). While the FLOP-Distance
and Architectural-Edit Distance metrics allow attackers to
differentiate subnetworks based on computational complexity and
structural differences, respectively, neither explicitly captures the
underlying shared parameters between subnetworks—an essential
factor directly influencing the propagation of poisoning. To
precisely quantify this aspect, we introduce the Shared-Parameter

Distance (SPD), which measures the relative proportion of
parameters that two subnetworks have in common.

Formally, given subnetworks 𝑠𝑝 and 𝑠′, we define SPD as:

𝛿𝑆𝑃𝐷 (𝑠𝑝 , 𝑠′) =
|𝑊𝑠𝑝 ∩𝑊𝑠′ |
|𝑊𝑠𝑝 |

(12)

where |𝑊𝑠𝑝 | represents the total number of parameters in the
target subnet 𝑠𝑝 , and |𝑊𝑠𝑝 ∩ 𝑊𝑠′ | represents the number of
parameters shared between subnetworks 𝑠𝑝 and 𝑠′. An SPD value
close to 1 indicates high parameter overlap (i.e., more shared
parameters), implying a greater likelihood of poisoning effect

Algorithm 2: Compute Shared Parameter Distance
Input: SuperNet 𝜃 , target subnet 𝑠𝑝 , subnet 𝑠′
Output: Relative Shared Parameter Distance: 𝛿𝑆𝑃𝐷 (𝑠𝑝 , 𝑠′)
// Initialize count of shared parameters

1 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0;
// Iterate through layers/modules of subnets

2 foreach Block Pair (𝑏𝑝 , 𝑏′) ∈ (𝜃𝑠𝑝 , 𝜃𝑠′) do
// Iterate through convolutional layers in blocks

3 foreach Conv𝑠𝑝 ∈ 𝑏𝑝 and Conv𝑠′ ∈ 𝑏′ do
// Compute overlapping tensor size

4 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ←𝑚𝑖𝑛 (𝑠𝑖𝑧𝑒 (𝐶𝑜𝑛𝑣𝑠𝑝), 𝑠𝑖𝑧𝑒 (𝐶𝑜𝑛𝑣𝑠′)) ;
// Extract overlapping parameter regions

5 𝑤𝑝,𝑜𝑣 , 𝑤
′
𝑜𝑣 ← 𝐶𝑜𝑛𝑣𝑠𝑝 [: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝],𝐶𝑜𝑛𝑣𝑠′ [: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝];

// Increment count if overlapping regions identical

6 if 𝑤𝑝,𝑜𝑣 == 𝑤′𝑜𝑣 then

7 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 + |𝑤𝑝,𝑜𝑣 | ;
8 end

9 end

10 end

// Compute relative SPD metric

11 𝛿𝑆𝑃𝐷 (𝑠𝑝 , 𝑠′) ← 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑢𝑛𝑡
|𝜃𝑠𝑝 |

;

12 return 𝛿𝑆𝑃𝐷 (𝑠𝑝 , 𝑠′) ;

propagation; conversely, a value close to 0 indicates low parameter
sharing and thus reduced unintended poisoning.

Algorithm 2 describes the calculation of the relative SPD metric.
First, we initialize a counter for shared parameters (Line 1). Next,
we iterate through corresponding blocks of the two subnetworks
(Line 2), comparing convolutional layers (Line 3) and computing
the overlapping tensor dimensions between their parameters
(Line 4). Then, we extract overlapping parameter regions from
these layers (Line 5). If these overlapping regions match exactly,
the counter increments accordingly by the number of shared
parameters (Line 7). Finally, the algorithm calculates the SPD by
dividing the total number of shared parameters by the total
number of parameters in the target subnet (Line 11), thereby
ensuring a normalized relative metric ranging from 0 (no
parameter overlap) to 1 (complete overlap).

From the attacker’s perspective, leveraging SPD enables
selective targeting based explicitly on parameter-sharing between
subnetworks, allowing control over backdoor propagation through
subnetworks with specific structural overlaps.

4.2.4 Defining Attack Granularity. In addition to defining distance
metrics to target subnetworks selectively, we introduce a
quantitative metric attack granularity, 𝜙 , to measure the precision
and stealthiness of the poisoning attack. Intuitively, 𝜙 quantifies
how selectively an attack activates only in the attacker-chosen
subnetworks. To compute this metric, we randomly sample a set of
𝑁 subnetworks, including the attacker-chosen target subnetwork
𝑠𝑝 , and evaluate their Attack Success Rates (ASRs) on the poisoned
dataset 𝐷𝑝 .

Ideally, non-target subnetworks should exhibit an ASR
equivalent to random guessing, approximately 1

𝐶
, where 𝐶 is the

number of classes in the dataset. We designate this random guess
probability as the desired mean 𝜇 = 1

𝐶
. However, in practice, since

baseline unpoisoned models can have ASRs deviating from 1
𝐶
(as

seen in Table 3), we substitute the baseline unpoisoned model’s
mean ASR for 𝜇. Then, for each sampled subnetwork 𝑠′ ∈ 𝑁 , we

2195

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

calculate the deviation from the desired mean normalized by the
standard deviation across all sampled subnetworks, formally:

𝑍 (𝑠′) = 𝐴𝑆𝑅(𝑠′) − 𝜇
𝜎

(13)

where 𝜎 is the standard deviation of ASRs computed across all
subnetworks in the sample. Following previous detection
methodologies [55], any subnetwork with a normalized score
𝑍 (𝑠′) > 2 (two standard deviations above the mean) is considered
detectable. Finally, we calculate 𝜙 , as the proportion of
subnetworks considered detectable:

𝜙 =
|{𝑠′ | 𝑍 (𝑠′) > 2, 𝑠′ ∈ 𝑁 }|

|𝑁 | (14)

A lower granularity value 𝜙 indicates higher stealthiness and
more precise targeting, while a higher 𝜙 value suggests broader
propagation of poisoning and thus higher detectability.

4.3 Subnetwork Poisoning In Practice

Distance metrics in hand, we now present the complete distance-
aware poisoning algorithm used to selectively poison subnetwork(s)
within a weight-shared SuperNet.

Algorithm 3 outlines our poisoning method. We first set the
active subnet 𝑆𝐴 to the attacker-specified target subnet 𝑠𝑝 (Line 1)
and then collect and store relevant architecture information (such
as expand ratios, widths, depths and kernel sizes), as well as
operational information (e.g., FLOPs) from this subnet as 𝐼𝑛𝑓 𝑜𝑝
(Line 2). This information serves as the reference for subsequent
distance calculations with randomly sampled subnetworks.

At each training iteration, we perform a forward pass using the
target subnet 𝑠𝑝 on poisoned inputs 𝑥𝑝 to obtain predictions 𝑦𝑝
and compute the corresponding poisoning loss L𝑝 (Lines 5-7).
Next, we randomly sample subnetworks 𝑠𝑟 ∈ S, set them as active
(Line 8), and gather their relevant architectural/operational
information 𝐼𝑛𝑓 𝑜𝑟 (Line 9) to calculate distances from the targeted
subnet (Line 10). This distance computation 𝛿𝑟 quantifies
architectural similarity or dissimilarity, enabling distance-based
loss scaling.

For each random subnet, we perform another forward pass on
poisoned inputs and compute the clean-data loss L𝑟 using clean
labels 𝑦𝑐 (Lines 11-12). Subsequently, we construct the
distance-aware loss Ω′ by scaling L𝑟 with the computed distance
𝛿𝑟 , and combine this with the poison-specific loss L𝑝 (Line 13).
Finally, we update the SuperNet parameters via gradient descent to
optimize the average distance-aware loss across subnetworks in
the current batch (Line 14). This formulation effectively restricts
the backdoor to the targeted subnet while preserving clean
accuracy in distant subnetworks. Note that our algorithm is
plug-and-play with a variety of distance metrics, increasing the
flexibility of our attack across different attacker scenarios.

5 Evaluation

Our prototype implementation of attacks utilizing VNet consists
of ∼ 4000 lines of code targeting SuperNets deployed using Python.
Upon attack completion, we measure the effectiveness as well as
the stealthiness of our attacks relative to the baseline approach

Algorithm 3: Distance-Aware SuperNet Poisoning
Input:Model Weights 𝜃 , Clean Data 𝐷𝑐 , Poisoned Data 𝐷𝑝 , Target Subnet

𝑠𝑝 , Epochs 𝐸, Distance Metric 𝛿 , Hyperparams 𝑝1 , 𝜂
Output: Poisoned Model Weights: 𝜃𝑃
// Set active subnet 𝑆𝐴 to the target

1 𝑆𝐴 ←− 𝑠𝑝
// Collect target subnet info

2 𝐼𝑛𝑓 𝑜𝑝 ←− 𝑆𝐴 ;
3 for 𝑒𝑝𝑜𝑐ℎ ← 1, . . . , 𝐸 do

// Each element in 𝐷𝑝 has an image and associated

clean/poisoned label 𝑦𝑡 , 𝑦𝑐
4 for Batch (𝑥𝑝 , 𝑦𝑡 , 𝑦𝑐) ∈ 𝐷𝑝 do

// Set active subnet to targeted subnet

5 𝑆𝐴 ←− 𝑠𝑝
// Inference on poisoned data

6 𝑦̂𝑝 = 𝑓 (𝑥𝑝 ;𝜃𝑆𝐴) ;
// Compute poison loss

7 L𝑝 = 𝐶𝐸 (𝑦𝑡 , 𝑦̂𝑝) ;
// Sample random subnets 𝑠𝑟 and set as active

8 𝑆𝐴 ←− 𝑠𝑟 | 𝑠𝑟 ∈ S;
// Collect random subnets info

9 𝐼𝑛𝑓 𝑜𝑟 ←− 𝑆𝐴 ;
// Compute distance between 𝑠𝑟 from 𝑠𝑝

10 𝛿𝑟 ←− 𝛿 (𝐼𝑛𝑓 𝑜𝑝 , 𝐼𝑛𝑓 𝑜𝑟) ;
// Compute random subnets output on poisoned data

11 𝑦̂𝑟 = 𝑓 (𝑥𝑝 ;𝜃𝑆𝑎) ;
// Compute clean loss (random subnet)

12 L𝑟 = 𝐶𝐸 (𝑦𝑐 , 𝑦̂𝑟) ;
// Compute distance-aware loss Ω′ for each random

subnet

13 Ω′ = 𝛿 (𝑠𝑝 , 𝑠𝑟) · L𝑟 + 𝑝1 · L𝑝 ;
// Update parameters

14 𝜃 ← 𝜃 − 𝜂∇𝜃
(

1
|S𝑏 |

∑
𝑠∈S𝑏 Ω′

)
;

15 end

16 end

(Figure 2a). Our model checkpoints, VNet code, and data gathering
code will be made available upon paper acceptance.

5.1 Experimental Setup

We evaluate attacks using VNet on two SuperNets proposed in prior
work, OFAMobileNetV3 [9, 46] and OFAResNet [9]. We directly
modified the OFAResNet model such that it was compatible with
the compound sampling approach utilized in CompOFA [46] for
faster training. Furthermore, we reduced OFAResNet’s width at
each stage to 25% ([64, 128, 256, 512]) of its original size ([256,
512, 1024, 2048]) to ensure that the model can fit on our GPUs.
OFAMobileNetV3 was left as implemented in CompOFA [46]. We
trained each model on the GTSRB [51] (traffic sign recognition)
and CIFAR10 [16] datasets. Unless otherwise specified, both OFA-
based SuperNets are initially trained to convergence following the
progressive shrinking paradigm [9, 46]. All models were trained
and fine-tuned on in-lab GPUs (a cluster of 8x NVIDIA A40s).

Poison Trigger and Dataset Preparation. For each training set, we
create a poisoned variant by embedding a green-square (for
CIFAR10) or red-square (for GTSRB) trigger into 10% of the images
in the dataset mirroring prior work [21]. The attacker-chosen
target label is assigned to all images containing the trigger. We
then combine the clean and poisoned portions to form the training
set for VNet-based fine-tuning.

2196

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 1: Evaluation of VNet on OFAMobileNetV3 [9] and OFAResnet [9] on the GTSRB [51] and CIFAR10 [16] datasets. VNet

was applied to target the smallest (MinNet), largest (MaxNet), and medium sized (MedNet) subnets in each SuperNet.

Dataset Trigger Model

Target Subnetwork
1
Config Target Subnetwork Stealthiness of Attack (Impact on Benchmark Subnetworks)

Weights (#) Latency FLOPs ACC ASR

Min. Subnetwork Med. Subnetwork Max Subnetwork

ACC ASR ACC ASR ACC ASR

C
I
F
A
R
1
0
[
1
6
]

G
r
e
e
n
-
S
q
u
a
r
e
[
2
1
]

O
F
A
M
N
V
3 2.16M Minimum 123M 85.6% 99.4% 85.6% 99.4% 88.3% 10.9% 87.3% 11.4%

2.43M Low 214M 84.1% 93.6% 85.5% 14.3% 88.3% 11.2% 88.8% 11.1%
3.25M Medium 230M 83.5% 99.5% 86.0% 11.1% 83.5% 99.5% 88.0% 9.8%
2.47M High 274M 83.7% 94.0% 87.1% 12.5% 88.5% 11.8% 87.3% 13.4%
4.92M Higher 302M 84.9% 96.0% 85.9% 13.3% 88.7% 11.2% 88.0% 10.4%
6.10M Maximum 445M 86.0% 99.9% 87.4% 11.5% 87.9% 11.5% 86.0% 99.9%

O
F
A
R
e
s
n
e
t 121M Minimum 18.3G 82.5% 99.9% 82.5% 99.9% 84.0% 9.18% 83.5% 9.84%

144M Low 40.2G 80.2% 99.9% 80.3% 99.4% 15.6% 84.4% 6.31% 84.22%
278M Medium 40.2G 82.8% 99.9% 84.1% 3.55% 82.8% 99.9% 84.4% 10.0%
155M High 51.2G 82.3% 99.9% 83.1% 14.1% 85.0% 9.72% 84.9% 9.66%
473M Higher 57.5G 83.4% 99.3% 84.3% 1.62% 84.8% 1.7% 84.0% 72.3%
571M Maximum 97.8G 83.3% 99.2% 83.6% 10.0% 83.5% 10.0% 83.3% 99.2%

G
T
S
R
B
[
5
1
]

R
e
d
-
S
q
u
a
r
e
[
2
1
]

O
F
A
M
N
V
3 2.16M Minimum 123M 94.2% 75.0% 94.2% 75.0% 95.0% 3.53% 93.9% 4.13%

2.43M Low 214M 95.1% 98.8% 94.8% 4.68% 95.7% 2.53% 95.5% 1.94%
3.25M Medium 230M 95.1% 91.2% 95.1% 4.17% 95.1% 91.2% 95.7% 3.80%
2.47M High 274M 95.4% 99.3% 94.5% 1.78% 95.7% 1.73% 95.0% 2.53%
4.92M Higher 303M 95.9% 98.9% 93.6% 1.95% 94.8% 1.77% 94.3% 4.18%
6.10M Maximum 445M 94.4% 80.7% 94.7% 3.33% 95.3% 3.33% 94.4% 80.7%

O
F
A
R
e
s
n
e
t 121M Minimum 18.3G 94.5% 97.4% 94.5% 97.4% 95.4% 2.11% 94.9% 2.06%

144M Low 40.2G 95.3% 99.6% 95.0% 17.0% 95.7% 1.8% 96.0% 1.81%
278M Medium 40.2G 94.3% 97.0% 95.2% 6.6% 94.3% 97.0% 95.6% 2.71%
155M High 51.2G 94.4% 99.0% 94.6% 5.9% 95.1% 1.99% 95.6% 2.09%
473M High 57.5G 94.7% 97.0% 95.3% 2.14% 95.6% 1.95% 94.8% 3.13%
571M Maximum 97.8G 95.4% 94.7% 95.0% 2.21% 95.7% 1.99% 95.4% 94.7%

1: Min. Subnetwork corresponds to the subnetwork with minimum latency in the SuperNet, Med. Subnetwork to medium latency, and Max Subnetwork to maximum latency.

Target Subnetwork Configurations. Within each SuperNet
(OFAMobileNetV3 or OFAResNet), we first define three benchmark
target/evaluation subnetworks: the minimum latency subnetwork
(MinNet), the maximum latency subnetwork (MaxNet), and a
medium latency subnetwork (MedNet). As MinNet and MaxNet
occupy the two extremes of the optimal latency–accuracy Pareto
frontier, we select them to evaluate how our proposed attack
influences model performance when operating under either
minimal or maximal resource usage conditions. MedNet, however,
features equal widths and depths across its blocks and still lies
along the optimal latency–accuracy Pareto frontier, thereby
providing a balanced configuration to evaluate performance under
moderate computational constraints. We also sample three
intermediate subnetworks to provide a finer-grained set of
operational points. Concretely, these subnetworks adjust the
expansion ratio and depth in smaller increments, their
configuration is further discussed in §A.1. The first intermediate
subnetwork (Low latency) lies between the MinNet and MedNet,
whereas the second (High latency) and third (Higher Latency)
intermediate subnetworks lie between the MedNet and the
MaxNet. These intermediate subnetworks lie outside the optimal
latency–accuracy Pareto frontier and allow us to evaluate VNet
across multiple “in-between” configurations. We used 𝑝1 = 3.0 for
all experiments in our evaluation. We discuss the variation of 𝑝1
values in §A.2 and discuss the dependence of training convergence
on 𝑝1 in §A.2.1.

Evaluation Metrics. We report the Attack Success Rate (ASR) on
poisoned inputs and the clean accuracy (ACC) on benign inputs
for each of the targeted/benchmark subnetworks. For our overall
evaluation (Table 1), we also highlight whether the targeted attack
affected benchmark subnetworks.

To assess the performance and stealthiness of each poisoning
configuration (varied along the axes of target subnetwork and
distance metric), we sample a large number of subnetworks (e.g.,
1000) from the trained SuperNet. Similarly, we report the
ASR/ACC for the model, the number of subnetworks in which the
attack is potentially detectable, as well as the number of
subnetworks on average that a defender would need to sample and
test to detect that the SuperNet was attacked.

5.2 Targeted Subnetwork Poisoning

Table 1 presents the results of VNet on OFAMobileNetV3 and
OFAResnet models across GTSRB and CIFAR10 datasets. Columns
1-3 identify the dataset, trigger type, and model architecture.
Columns 4-6 detail the target subnetwork configuration,
specifying the subnetworks’ size (# of weights), latency, and
FLOPs. Columns 7-8, show the performance metrics of the
targeted subnetwork (ACC, ASR). Columns 9-10, 11-12, and 13-14
show the performance metrics (ACC, ASR, FLOPs) for our
benchmarks (MinNet, MedNet, and MaxNet, respectively). All
experiments in this table use the FLOP-distance metric (§4.2.2). We
chose this metric because it represents a challenging case for
stealth due to its lower granularity, which intentionally spreads
the attack within a FLOP range. Even under this condition, VNET
maintains high precision, with non-target benchmark subnetworks
exhibiting ASRs close to the random-guess baseline.

For the CIFAR10 dataset with OFAMobileNetV3, our results
demonstrate precise targeting capability. When attacking the
subnetwork with minimum latency (row 1), we achieve 99.4% ASR
on the target while maintaining low ASR (10.9-11.4%) on other
subnetworks. Similar precision is observed when targeting
MedNet (row 3) and MaxNet (row 6), with ASRs of 99.5% and 99.9%
respectively, while non-targeted subnetworks consistently show
ASRs close to the random-guess baseline 1

𝐶
(10% for CIFAR10).

2197

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

(a) VNet Attack On MinNet. (b) VNet Attack On A Medium Net. (c) VNet Attack On MaxNet.

Figure 4: VNet attack applied to the three benchmark subnetworks.

When targeting the low, high, and higher latency subnetworks
(rows 2, 4-5), we observe negligible shift in the ASR of nearby
benchmark subnetworks. For example, when targeting the
subnetwork with 214M FLOPs (row 2), the closest benchmark
subnetwork (Med Subnetwork at 230M FLOPs) maintains an ASR
of only 11.2%, demonstrating minimal interference despite
proximity in computational complexity. Similarly, the intermediate
subnetworks with 302-303M FLOPs (rows 4-5) achieve high ASRs
(94.0% and 96.0%), while the Max and Med subnetworks maintain a
low ASR, 13.4%/10.4% and 11.8%/11.2%, respectively. Across all
CIFAR10 intermediate targeting experiments, benchmark
subnetworks show an average ASR shift of only 1.8% from
baseline.

For the CIFAR10 dataset with OFAResnet, our results show
similar precision but at significantly higher computational scales.
When targeting Min Subnetwork (row 7), we achieve 99.9% ASR
on the target while maintaining low ASR (9.18-9.84%) on other
benchmark subnetworks. Med and Max Subnetwork targeting
(rows 9, 12) demonstrate comparable effectiveness with 99.9% and
99.2% target ASRs, respectively, while non-targeted benchmark
subnetworks consistently show ASRs close to the random-guess
baseline (≈10% for CIFAR10). When targeting intermediate
subnetworks (rows 8, 10-11), we observe highly selective
poisoning despite the massive computational ranges involved
(18.3G-104G FLOPs). For instance, when targeting the subnetwork
with 51.1G FLOPs (row 10), The Med subnetwork (44.2G FLOPs)
maintains an ASR of only 1.7% despite relative proximity in
computational complexity. One noteworthy exception is the Max
Subnetwork showing elevated ASR (72.3%) in this case, suggesting
that some architectural similarities affect poisoning propagation at
higher computational scales. However, for the 52.9G FLOPs
intermediate target (row 11), all benchmark subnetworks maintain
low ASRs (9.66-14.1%), confirming our attack’s selectivity.

The GTSRB dataset results further validate VNet’s effectiveness.
For OFAMobileNetV3 (rows 13-18), when targeting the Min
Subnetwork (Figure 4a), we achieve 75.0% ASR while maintaining
clean data accuracy of 94.2%. Non-targeted subnetworks exhibit
significantly lower ASRs (3.53-4.13%), demonstrating attack
selectivity. The Med Subnetwork (Figure 4b) targeting experiment
(row 15) achieves a 91.2% ASR on the target subnetwork, while the
Max Subnetwork(Figure 4c) targeting (row 18) achieves 80.7% ASR.
Across GTSRB OFAMobileNetV3 experiments, the average ASR for

targeted subnetworks is 88.6%, while non-targeted subnetworks
average only 3.1%. Similar to CIFAR10, when targeting the 214M
FLOPs subnetwork (row 14), we achieve 98.8% ASR, while the Med
Subnetwork maintains only 1.94% ASR despite being
architecturally similar. Across all GTSRB intermediate targeting
experiments with OFAMobileNetV3, benchmark subnetworks
show an average ASR increase of only 0.7% from their baseline.

For OFAResnet on GTSRB (rows 19-24), we observe similar
success patterns despite the model’s substantially higher
computational complexity (GFLOPs: Giga FLOPs). Min Subnetwork
targeting yields 97.4% ASR, Med Subnetwork targeting achieves
97.0% ASR, and Max Subnetwork targeting reaches 94.7% ASR,
giving an average targeted ASR of 96.4% for this model-dataset
combination. The ASR of non-targeted subnetworks consistently
remains low (average 2.1%), further validating our approach.

Across all experiments, clean-data accuracy remains
consistently high (94-96% for GTSRB, 83-88% for CIFAR10),
confirming that VNet selectively poisons target subnetworks
without degrading overall model utility (matching traditional
poisoning approaches). This demonstrates VNet’s ability to create
stealthy backdoors that activate only under specific architectural
configurations while maintaining model performance under other
conditions.

5.3 Varied Distance Metrics

Table 2: Summary of ASR and ACC for each sample. Each

row corresponds to a different distance metric experiment.

Dataset Model Target Attack
Target Subnetwork Max in 1000 Samples

ACC ASR ACC ASR

G
T
S
R
B
[
5
1
]
W

i
t
h
G
S
1

O
F
A
M
N
V
3

Entire No Poison - - 95.4% 3.42%
Supernet Traditional [21] - - 95.6% 99.9%

MinNet

No Dist. 95.1% 94.3% 94.5% 65.4%
Flop Dist. 94.3% 76.3% 95.0% 19.7%
Edit Dist. 94.6% 81.5% 95.2% 20.9%
SP Dist. 94.8% 83.1% 95.5% 18.3%

MedNet

No Dist. 95.4% 95.9% 95.9% 82.1%
Flop Dist. 95.1% 91.5% 95.6% 46.1%
Edit Dist. 95.4% 89.1% 95.8% 37.7%
SP Dist. 95.6% 92.2% 96.0% 38.6%

MaxNet

No Dist. 95.3% 97.4% 95.7% 44.9%
Flop Dist. 94.6% 80.6% 94.9% 8.53%
Edit Dist. 95.2% 88.6% 95.7% 14.5%
SP Dist. 95.1% 99.4% 96.0% 11.1%

1: GTSRB dataset poisoned with the green square backdoor used in Table 1

Table 2 highlights the effects of varied distance metrics on the
stealthiness of the attack. Columns 1-4 show the dataset, model,

2198

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

target subnetwork, and distance metric used in each experiment.
Columns 5-6 show the attack clean-data accuracy (ACC) and
success rate (ASR) of the explicitly targeted subnetwork. To
measure the unintended spread of the attack to other subnetworks,
in each experiment we sample 1000 subnetworks from the
SuperNet, and measure the ACC and ASR for each sampled
subnetwork. Columns 7-8 (ACC, ASR) show the metrics for the
subnetwork with maximum ASR found in the sampled set,
capturing unintended backdoor propagation. Ideally, we aim to see
that the maximum ASR in the sampled subnetworks remains low
and that application of the distance metric further decreases the
maximum ASR in each sample set.

Rows 1 and 2 establish our baselines: row 1 shows that when
no poisoning occurs, the maximum ASR in 1000 samples is close
to random guessing (3.42%); row 2 shows that with traditional
poisoning [48, 21] of the model, the maximum ASR seen for the
1000 samples is 99.9%. For the Min Subnetwork experiments (rows
3-6), our attack successfully maintains high ACC (an average of
≈ 95%), while reducing the maximum ASR to as low as 18.3% (for
SP distance). Applying our attack reduces unwanted spillover of
poisoning to untargeted subnetworks. For the Min Subnetwork
(rows 3-6), FLOP distance maintains high ASR on the target (76.3%)
while substantially limiting maximum non-target ASR to 19.7%. ED
(row 5) and SPD (row 6) show comparable but slightly less effective
isolation. Similar observations hold for the Med Subnetwork (rows
7-10) and Max Subnetwork targeting (rows 11-14). Notably, it can
be seen that in the Max Subnetwork experiments, the maximum
ASR in the 1000 sampled subnetworks is the lowest of all targets
(achieving a minimum of 8.53% with FLOP distance).

Interestingly, when a distance metric is not applied (row 3),
the attack exhibits reduced stealthiness (maximum ASR of 65.4%),
highlighting the need for a distance metric for greater stealthiness.
The same can be seen for theMed Subnetwork andMax Subnetwork
No distance experiments (rows 7 and 11), where the maximum ASR
in the 1000 sampled subnetworks is on average 3.1× greater than
the maximum ASRs when distance metrics are used (rows 8-10 and
12-14).

We then investigated the statistical distributions of ASR and
ACC across subnetworks in Table 3, focusing on the mean,
variance (Var), and the Ease of Detection, or EoD, which is a shift
of the mean relative to the clean baseline. Higher variance
indicates more significant variation among subnetworks, thus
capturing unintended propagation or isolation.

For ASR metrics, Var values in distance-based subnetwork
experiments (rows 3-14) are notably higher than the clean (row 1,
𝑉𝑎𝑟 = 3 × 10−4) and traditional poisoning baselines (row 2,
𝑉𝑎𝑟 = 0.0158). Among these, the highest variance occurs with Med
Subnetwork targeting using the No distance metric (row 7,
𝑉𝑎𝑟 = 29.4), indicating broader unintended ASR spread, whereas
the lowest variance is seen in Max Subnetwork targeting using the
SP distance (row 14, 𝑉𝑎𝑟 = 0.153), demonstrating high attack
isolation. Despite these variances, the mean ASRs across all
distance-metric experiments remain low, closely resembling the
clean baseline (3.34%). The highest shift from baseline mean is
observed in Med Subnetwork with FLOP distance (row 8,
𝐸𝑜𝐷 = 2.997), while the lowest is in the Max Subnetwork using
Shared-Parameter distance (row 14, 𝐸𝑜𝐷 = −1.5). However,

Table 3: Mean, variance, and shift of mean from the clean

sample for ASR and ACC.

Dataset
Metrics of 1000 Samples From Table 2

and Target Attack ASR ACC

Model
Mean Var. EoD

1
Mean Var. EoD

1

O
F
A
M
N
V
3
o
n
G
T
S
R
B
[
5
1
]

Entire No Poison 3.34% 3e-4% - 96.0% 0.0468% -
Supernet Traditional 99.7% 0.0158% 96.4% 95.5% 0.046% -0.499%

MinNet

No Dist. 2.71% 9.3% -0.621% 95.3% 0.068% -0.673%
Flop Dist. 3.99% 0.655% 0.652% 95.0% 0.0887% -1.06%
Edit Dist. 1.99% 0.596% -1.35% 95.6% 0.0726% -0.44%
SP Dist. 2.54% 0.845% -0.798% 94.8% 0.0953% -1.24%

MedNet

No Dist. 4.9% 29.4% 1.57% 95.8% 0.0722% -0.186%
Flop Dist. 6.03% 16.1% 2.69% 95.6% 0.0541% -0.382%
Edit Dist. 4.33% 4.63% 0.997% 95.7% 0.068% -0.337%
SP Dist. 3.08% 9.22% -0.259% 95.6% 0.0588% -0.452%

MaxNet

No Dist. 4.24% 17.3% 0.901% 95.6% 0.0786% -0.396%
Flop Dist. 3.6% 0.154% 0.269% 95.2% 0.121% -0.771%
Edit Dist. 3.7% 0.399% 0.369% 95.5% 0.0635% -0.484%
SP Dist. 1.83% 0.153% -1.5% 95.9% 0.0547% -0.14%

1: EoD→ Ease of Detection. The mean of each row subtracted from the mean
of Row 1 (Entire SuperNet No Poison)

averaging all EoDs reveals an overall increase of only 0.24%,
underscoring the stealthy nature of all distance metrics.

We visualize all distance metrics for the Med Subnetwork (rows
7-10) in Figure 5. No distance, Figure 5a, shows the greatest
amount of variance in Table 3 among the four experiments, which
intuitively aligns with our expectation that without quantifying
the distance between subnetworks as a part of poisoning, the
spread of poisoning across non-targeted subnetworks will be
greater. Next, FLOP distance (Figure 5b), shows significantly less
variance than for No distance in Table 3 but visually shows that
there are multiple other points in the targeted FLOP range with
increased ASR values relative to No distance, ED, and SPD. This
also aligns with our expectation that the FLOP distance should
intentionally cause greater attack success rates in a particular
FLOP range of the model. Finally, both Edit distance (Figure 5c)
and SPD (Figure 5d) have the highest granularity, which
corroborates our hypotheses in §4.2.1 and §4.2.3 that these distance
metrics can be applied to have the highest fine-grained control
over the target subnetwork and not a particular operational range.

Analyzing the ACC metrics, variances again exceed the clean
baseline (row 1, 𝑉𝑎𝑟 = 0.0468). The greatest variance occurs with
the Max Subnetwork targeting using FLOP distance (row 12,
𝑉𝑎𝑟 = 0.121), suggesting minor accuracy changes among
subnetworks. Conversely, the smallest variance appears in Med
Subnetwork targeting using FLOP distance (row 8, 𝑉𝑎𝑟 = 0.0541),
signifying less accuracy deviation. The shifts in mean accuracy
(𝐸𝑜𝐷) relative to the clean baseline range from −0.0382% (row 8) to
−0.771% (row 12). The average EoD across all ACC experiments is
minimal (−0.55%), indicating overall high accuracy retention
despite targeted poisoning. This also aligns with the decrease in
clean accuracy seen in the naively poisoned model relative to the
baseline model (−0.5% in row 2 and −0.55% in rows 3-14).
Collectively, these findings demonstrate that while distance-aware
poisoning strategies produce increased ASR variability across
subnetworks, the overall stealthiness (reflected by low mean ASR
deviations) and accuracy preservation remain robust, significantly
limiting defender detection opportunities.

We next quantified the detectability implications in terms of
attack granularity metrics presented in Table 4. Columns 4-6 show

2199

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

(a) No Edit distance (b) FLOP distance. (c) Edit distance. (d) SP distance

Figure 5: Left to right the attack gets more granular based on the distance metric (Maximum granularity with SP distance and

minimum granularity with FLOP distance

Table 4: Detectability metrics for each targeted subnetwork

for model poisoned with VNet. Incurs a large increase in

cost for attack testing.

Model Target Attack Detected # To Detect Insights

O
F
A
M
N
V
3
o
n
G
T
S
R
B
[
5
1
]

Entire No Poison - - Detectable in All
Subnetworks

Avg. Detectable
Subnetworks ≈33

Avg. # For
Investigator To
Sample To Detect
≈ 66 subnetworks

Can incur on
average 66x the
GPU cost to test!

Supernet Traditional 1000 1.0

MinNet

No Dist. 10 100.0
Flop Dist. 44 22.7
Edit Dist. 6 167.0
SP Dist. 13 76.9

MedNet

No Dist. 46 21.7
Flop Dist. 67 14.9
Edit Dist. 32 31.2
SP Dist. 28 35.7

MaxNet

No Dist. 43 23.3
Flop Dist. 66 15.2
Edit Dist. 36 27.8
SP Dist. 4 250.0

the number of detectable subnetworks in the 1000 sampled
subnetworks (Detected), the expected number of subnetworks that
defenders must sample to reliably detect the attack (# To Detect),
and our insights on the results.

It can be seen that in the traditional poisoning experiment (row
2) all 1000 subnetworks are detected (# To Detect is 1.0), meaning
a single sampled subnetwork would reveal the attack to a defender.
In contrast, in rows 3-14, we see that the smallest number of
detected subnetworks was in Max Subnetwork with SP distance (4
detected subnetworks) and the largest number of detected
subnetworks was in the Med Subnetwork with Flop distance (67
detected subnetworks). Intuitively, as FLOP distance (rows 4, 8, 12)
incentivizes a range of subnetworks within a FLOP range to
behave adversarially, the effects of the FLOP distance attack will
propagate to more untargeted subnetworks than for other distance
metrics. Confirming this, on average the FLOP distance metrics
had 59 detected subnetworks where as Edit distance and SP
distance had 24.6 and 15 detected subnetworks, respectively.
Furthermore, we calculated 33 subnetworks as the average number
of detected subnetworks across rows 3-14 in the 1000 sampled
subnetworks. This means our attack was approximately 30×
stealthier than the naive attack shown in row 2. Finally, it can be
seen that an investigator would need to sample a minimum of ∼ 66
subnetworks on average to be able to find one in which the attack
is detected (ultimately increasing the computational cost for the
defender by 66×).

Counterintuitive Findings and Implications. Interestingly, these
results suggest a counterintuitive finding: intuitively, poisoning
larger subnetworks (e.g., Max Subnetwork) might be expected to
induce widespread propagation due to the larger parameter count.
However, we observed that larger subnetworks exhibit no
noticeable difference in accidental propagation of the backdoor
even though they encompass a majority of the weights in the
SuperNet. In fact, the SP distance attack on the Max Subnetwork
actually achieves the highest stealthiness (needing 250
subnetworks to sample to detect) out of all poisoning attacks we
conducted.

6 Discussion

6.1 Limitations

Although VNet introduces a systematic approach to selectively
target subnetworks within weight-shared SuperNets, it does have
several inherent limitations. First, a practical gap exists between
abstract SuperNet operations and real-world attack scenarios.
Without having high familiarity with both SuperNets and the
system deploying the SuperNet, bridging the gap between the two
to target specific subnetworks or operation ranges remains a
challenge. However, we assume that an attacker aiming to target
specific operational conditions (e.g., a vehicle driving at slowly in
the rain, shown in Figure 2) possesses the technical sophistication
to accurately reverse-engineer the SuperNet’s runtime system
logic for subnetwork selection via existing reverse-engineering
techniques [43, 59, 37, 53].

Second, our current evaluation and experiments are performed
on OFA-based [9, 46] SuperNets. OFA SuperNets are currently the
only existing SuperNets [2, 29, 46, 30, 38, 18]. However, VNet can
be ported to novel SuperNet frameworks that may exist in the
future. VNet relies on two invariant properties of SuperNets: 1)
the use of stochastic gradient descent, where VNet regularizes
weight updates based on the “distance” between subnetworks and
2) the presence of some measurable property of a subnetwork (e.g.,
subnetwork size, shared parameters, performance, etc.) that can be
used to calculate that distance. Future SuperNet implementations
must satisfy these two properties, making VNet extendable to new
SuperNet frameworks with engineering effort.

Finally, our evaluation did not assume access to extensive
computational resources available in commercial settings. Indeed,
all our experiments were conducted within a modest academic

2200

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

setting, requiring only limited computational resources and
feasible within reasonable time frames (≈ 100 hours for the
complete evaluation). This indicates that even adversaries with
moderate computational capabilities could realistically execute
similar fine-grained poisoning attacks, underscoring the practical
significance of this threat and emphasizing the need for proactive
defenses by the research community.

7 Related Work

Attacks Against DNNs. Data poisoning attacks [6, 39, 12, 13, 21,
48, 17] leverage adversarially crafted inputs during training, causing
the model to misclassify specific inputs at deployment. Such attacks
have been shown to significantly undermine federated learning [17,
3] and transfer learning setups where malicious samples introduced
during training propagate misclassifications to deployed models.

Backdoor attacks constitute a particularly severe subset of
poisoning attacks, where an adversary implants hidden behaviors
into a deployed DNN [21, 7, 1, 52]. These backdoors remain latent
until triggered at inference time by specific adversarially defined
inputs. While we find in our work that such attacks are effective
against SuperNets, they entirely ignore the properties of
SuperNets that enable novel and stealthier attacks.

SuperNets. Automated architecture search methods have been
increasingly adopted to replace the process of manually designing
efficient DNNs for targeted deployment. They involve searching for
and training efficient DNN architectures. Early techniques faced
prohibitive computational costs due to independent training of
candidate architectures [66, 65]. The introduction of weight-sharing
SuperNets [45, 44, 35] marked significant progress, enabling more
efficient exploration of architectural configurations.

Several prominent SuperNets include OFA [9], BigNAS [61],
CompOFA [46], and D𝜖pS [2] that apply progressive shrinking
during once-for-all training to efficiently train subnetworks.
SuperNets have also been extended to the federated learning
setting [8], where many clients collaboratively learn a shared
prediction model while keeping all the training data on-device.
FedNAS [23] and SuperFedNAS [30] enable clients to
collaboratively search for better architectures with higher
accuracy. While some work has proposed poisoning the search
space in NAS [58], we find that our attack cannot be categorized in
the same way, as those works affect the selection process, whereas
our attack implicitly backdoors the model and has no control over
model selection.

8 Conclusion

We propose VNet, a novel methodology to achieve selective
poisoning of subnetworks in SuperNets. Our attack is capable of
achieving high ASRs on target subnetworks while preserving low
ASRs and high ACCs on non-targeted subnetworks. Our
methodology is the first to connect a poisoning attack’s efficacy
directly to the real-time environmental/deployment conditions in
which the AI system is deployed. Furthermore, we propose three
novel distance metrics to improve the selective capabilities of
VNet for targeting specific subnetworks. VNet when evaluated
across two SOTA SuperNets, six target subnetwork configurations,
and the three distance metrics, is able to increase the cost of attack
detection by a factor of ∼ 66×.

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
2018. Turning your weakness into a strength: watermarking deep neural
networks by backdooring. In Proceedings of the 27th USENIX Security

Symposium (Security). Baltimore, MD, (Aug. 2018).
[2] Aditya Annavajjala, Alind Khare, Animesh Agrawal, Igor Fedorov,

Hugo Latapie, Myungjin Lee, and Alexey Tumanov. 2024. D𝜖ps: delayed
𝜖-shrinking for faster once-for-all training. In Proceedings of the 2024 European

Conference on Computer Vision (ECCV). Malmö, Sweden, (Sept. 2024).
[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2018. How to backdoor federated learning. In Proceedings of the

23rd International Conference on Artificial Intelligence and Statistics (AISTATS).
Virtual Conference.

[4] P. Behnam, J. Tong, A. Khare, Y. Chen, Y. Pan, P. Gadikar, A. Bambhaniya,
T. Krishna, and A. Tumanov. 2023. Hardware-software co-design for real-time
latency-accuracy navigation in tinyml applications. IEEE Micro, 01, (Sept. 2023),
1–7. doi: 10.1109/MM.2023.3317243.

[5] Payman Behnam, Jianming Tong, Alind Khare, Yangyu Chen, Yue Pan, Pranav
Gadikar, Abhimanyu Bambhaniya, Tushar Krishna, and Alexey Tumanov. 2023.
Subgraph stationary hardware-software inference co-design. In Proceedings

of the 6th Conference on Machine Learning and Systems (MLSys’23). Miami,
Florida.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks
against support vector machines, (June 2012). doi: 10.5555/3042573.3042761.

[7] Battista Biggio and Fabio Roli. 2018. Wild patterns: ten years after the rise
of adversarial machine learning. In Proceedings of the 25th ACM Conference

on Computer and Communications Security (CCS). Toronto, ON, Canada, (Oct.
2018).

[8] Keith Bonawitz et al. 2019. Towards federated learning at scale: system design.
arXiv preprint arXiv:1902.01046. https://arxiv.org/abs/1902.01046.

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020.
Once-for-all: train one network and specialize it for efficient deployment. In
Proceedings of the 8th International Conference on Learning Representations

(ICLR). Virtual Conference, (Apr. 2020).
[10] Di Cao, Shan Chang, Zhijian Lin, Guohua Liu, and Donghong Sun. 2019.

Understanding distributed poisoning attack in federated learning. In
Proceedings of the 2019 International Conference on Parallel and Distributed

Systems (ICPADS). Tianjin, China, (Dec. 2019).
[11] Xiaoyu Cao and Neil Zhenqiang Gong. 2022. Mpaf: model poisoning attacks to

federated learning based on fake clients. In Proceedings of the 39th IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,
Louisiana, (June 2022).

[12] Nicholas Carlini. 2021. Poisoning The Unlabeled Dataset of Semi-Supervised
Learning. In Proceedings of the 30th USENIX Security Symposium (Security).
Virtual Conference, (Aug. 2021).

[13] Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel
Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, and
Florian Tramèr. 2024. Poisoning web-scale training datasets is practical. In
Proceedings of the 45th IEEE Symposium on Security and Privacy (S&P). San
Francisco, CA, (May 2024).

[14] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526. https://arxiv.org/abs/1712.05526.

[15] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project adam: building an efficient and scalable deep learning training
system. In Proceedings of the 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI). Broomfield, Colorado, (Oct. 2014).
[16] [n. d.] Cifar-10 (canadian institute for advanced research). [Accessed: 2023-01-

19]. (). http://www.cs.toronto.edu/~kriz/cifar.html.
[17] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model

poisoning attacks to byzantine-robust federated learning. In Proceedings of the

29th USENIX Security Symposium (Security). Virtual Conference, (Aug. 2020).
[18] Maxime Girard, Victor Quétu, Samuel Tardieu, Van-Tam Nguyen, and Enzo

Tartaglione. 2024. Memory-optimized once-for-all network. Accessed: 2025-07-
11. (2024). https://github.com/MaximeGirard/memory-optimized-once-for-all.

[19] [SW] GitHub, GitHub 2024. url: https://github.com.
[20] Github. [n. d.] Github active malware or exploits. [Accessed: 2024-7-12]. ().

https://docs.github.com/en/site- policy/acceptable- use- policies/github-
active-malware-or-exploits.

[21] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets:
identifying vulnerabilities in the machine learning model supply chain. arXiv
preprint arXiv:1708.06733. https://arxiv.org/abs/1708.06733.

[22] Junfeng Guo, Ang Li, and Cong Liu. 2022. AEVA: black-box backdoor detection
using adversarial extreme value analysis. In Proceedings of the 10th International
Conference on Learning Representations (ICLR). Virtual Conference, (Apr. 2022).

2201

https://doi.org/10.1109/MM.2023.3317243
https://doi.org/10.5555/3042573.3042761
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1712.05526
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/MaximeGirard/memory-optimized-once-for-all
https://github.com
https://docs.github.com/en/site-policy/acceptable-use-policies/github-active-malware-or-exploits
https://docs.github.com/en/site-policy/acceptable-use-policies/github-active-malware-or-exploits
https://arxiv.org/abs/1708.06733

CCS ’25, October 13–17, 2025, Taipei, Taiwan David Oygenblik et al.

[23] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Towards
non-iid and invisible data with fednas: federated deep learning via neural
architecture search. arXiv preprint arXiv:2004.08546.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the 33rd IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, (June
2016).

[25] Andrew Howard et al. 2019. Searching for MobileNetV3. In Proceedings of the

IEEE/CVF International Conference on Computer Vision. Seoul, South Korea.
[26] Hugging Face. [n. d.] [Accessed: 2023-10-06]. (). https://huggingface.co/.
[27] Huggingface. [n. d.] Huggingface model safety. [Accessed: 2024-7-12]. (). https:

//huggingface.co/docs/text-generation-inference/en/basic_tutorials/safety.
[28] Kristian Humble. 2024. War, artificial intelligence, and the future of conflict.

Georgetown Journal of International Affairs. Accessed: 2025-01-31. https://gjia.
georgetown.edu/2024/07/12/war-artificial-intelligence-and-the-future-of-
conflict/.

[29] Rafael Claro Ito, Emely Pujólli Da Silva, and Fernando J Von Zuben. 2024. Ofa
3: automatic selection of the best non-dominated sub-networks for ensembles.
In Proceedings of the 2024 International Joint Conference on Neural Networks

(IJCNN). Yokohama, Japan, (July 2024).
[30] Alind Khare, Animesh Agrawal, Aditya Annavajjala, Payman Behnam,

Myungjin Lee, Hugo Latapie, and Alexey Tumanov. 2024. Superfednas:
cost-efficient federated neural architecture search for on-device inference. In
Proceedings of the 2024 European Conference on Computer Vision (ECCV).
Malmö, Sweden, (Sept. 2024).

[31] Alind Khare, Dhruv Garg, Sukrit Kalra, Snigdha Grandhi, Ion Stoica, and Alexey
Tumanov. 2025. Superserve: fine-grained inference serving for unpredictable
workloads. In Proceedings of the 22nd USENIX Symposium on Networked Systems

Design and Implementation (NSDI). Philadelphia, PA, (Apr. 2025).
[32] S. Kullback and R.A. Leibler. 1951. On information and sufficiency. Annals of

Mathematical Statistics, 22, 79–86.
[33] Harry Langford, Ilia Shumailov, Yiren Zhao, Robert Mullins, and

Nicolas Papernot. 2025. Architectural neural backdoors from first principles.
In Proceedings of the 46th IEEE Symposium on Security and Privacy (S&P). San
Francisco, CA, (May 2025).

[34] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor learning:
a survey. IEEE Transactions on Neural Networks and Learning Systems, 35, 1,
5–22.

[35] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: differentiable
architecture search. arXiv preprint arXiv:1806.09055.

[36] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. Abs: scanning neural networks for back-doors by
artificial brain stimulation. In Proceedings of the 26th ACM Conference on

Computer and Communications Security (CCS). London, UK, (Nov. 2019).
[37] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, Xiaofei Xie, and Lei Ma. 2023.

Decompiling x86 deep neural network executables. In Proceedings of the 32nd

USENIX Security Symposium (Security). Anaheim, CA, (Aug. 2023).
[38] Lotfi Abdelkrim Mecharbat, Ibrahim Almakky, Martin Takac, and Mohammad

Yaqub. 2025. Mednns: supernet-based medical task-adaptive neural network
search. arXiv preprint arXiv:2504.15865.

[39] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,
Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli. 2017. Towards poisoning
of deep learning algorithms with back-gradient optimization. arXiv preprint
arXiv:1708.08689. https://arxiv.org/abs/1710.00942.

[40] Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and
Lorenzo De Carli. 2023. Beyond typosquatting: an in-depth look at package
confusion. In Proceedings of the 32nd USENIX Security Symposium (Security).
Anaheim, CA, (Aug. 2023).

[41] Lucas Prado Osco, JoséMarcato Junior, Ana PaulaMarques Ramos, Lúcio André
de Castro Jorge, Sarah Narges Fatholahi, and Jonathan de Andrade Silva. 2021.
A review on deep learning in uav remote sensing. International Journal of
Applied Earth Observation and Geoinformation, 102. doi: https://doi.org/10.101
6/j.jag.2021.102456.

[42] David Oygenblik, Dinko Dermenzhiev, Filippos Sofias, Mingxuan Yao,
Haichuan Xu, Runze Zhang, Jeman Park, Amit Sikder, and
Brendan Saltaformaggio. 2026. Achieving ZEN: Combining Mathematical and
Programmatic Deep Learning Model Representations for Attribution and
Reuse. In Proceedings of the 2026 Annual Network and Distributed System

Security Symposium (NDSS). San Diego, CA, (Feb. 2026).
[43] David Oygenblik, Carter Yagemann, Joseph Zhang, Arianna Mastali, Jeman

Park, and Brendan Saltaformaggio. 2024. AI Psychiatry: Forensic Investigation
of Deep Learning Networks in Memory Images. In Proceedings of the 33rd

USENIX Security Symposium (Security). Philadelphia, PA, (Aug. 2024).
[44] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient

neural architecture search via parameters sharing. In International conference

on machine learning. PMLR, 4095–4104.

[45] Esteban Real, AlokAggarwal, YanpingHuang, andQuoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai

conference on artificial intelligence number 01. Vol. 33, 4780–4789.
[46] Manas Sahni, Shreya Varshini, Alind Khare, and Alexey Tumanov. 2021.

Compofa: compound once-for-all networks for faster multi-platform
deployment. In Proceedings of the 9th International Conference on Learning

Representations (ICLR). Virtual Conference, (May 2021).
[47] Sentient Digital, Inc. 2024. The most useful military applications of ai in 2024

and beyond. Accessed: 2025-01-31. (2024). https://sdi.ai/blog/the-most-useful-
military-applications-of-ai/.

[48] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison frogs! targeted clean-label
poisoning attacks on neural networks. In Proceedings of the 32nd Conference

on Neural Information Processing Systems (NeurIPS). Montreal, Canada, (Dec.
2018).

[49] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the byzantine:
optimizing model poisoning attacks and defenses for federated learning. In
Proceedings of the 2021 Annual Network and Distributed System Security

Symposium (NDSS). Virtual Conference, (Feb. 2021).
[50] Hossein Siadati, Sima Jafarikhah, Elif Sahin, Terrence Brent Hernandez,

Elijah Lorenzo Tripp, Denis Khryashchev, and Amin Kharraz. 2024. Devphish:
exploring social engineering in software supply chain attacks on developers.
2402.18401. https://arxiv.org/abs/2402.18401.

[51] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. 2011.
The German Traffic Sign Recognition Benchmark: a multi-class classification
competition. In IEEE International Joint Conference on Neural Networks.

[52] Bing Sun, Jun Sun, Wayne Koh, and Jie Shi. 2024. Neural network semantic
backdoor detection and mitigation: a Causality-Based approach. In Proceedings

of the 33rd USENIX Security Symposium (Security). Philadelphia, PA, (Aug. 2024).
[53] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. 2021. Mind your

weight(s): a large-scale study on insufficient machine learning model protection
in mobile apps. In Proceedings of the 30th USENIX Security Symposium (Security).
Virtual Conference, (Aug. 2021).

[54] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data
poisoning attacks against federated learning systems. In Proceedings of the 25th

European Symposium on Research in Computer Security (ESORICS). Guildford,
United Kingdom, (Sept. 2020).

[55] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. 2019.
Neural cleanse: identifying and mitigating backdoor attacks in neural networks.
In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P). San
Francisco, CA, (May 2019).

[56] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. 2019. Distilling object
detectors with fine-grained feature imitation. In Proceedings of the 36th

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long
Beach, CA, (June 2019).

[57] Xingxing Wei, Ying Guo, and Jie Yu. 2022. Adversarial sticker: a stealthy attack
method in the physical world. 2104.06728. https://arxiv.org/abs/2104.06728.

[58] Robert Wu, Nayan Saxena, and Rohan Jain. 2021. Poisoning the search space in
neural architecture search. arXiv:2106.14406. https://arxiv.org/abs/2106.14406.

[59] Ruoyu Wu, Taegyu Kim, Dave (Jing) Tian, Antonio Bianchi, and Dongyan Xu.
2022. DnD: a Cross-Architecture deep neural network decompiler. In
Proceedings of the 31st USENIX Security Symposium (Security). Boston, MA,
(Aug. 2022).

[60] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. 2019. Latent
backdoor attacks on deep neural networks. In Proceedings of the 26th ACM

Conference on Computer and Communications Security (CCS). London, UK,
(Nov. 2019).

[61] Jiahui Yu et al. 2020. Bignas: scaling up neural architecture search with big
single-stage models. In Computer Vision–ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer, 702–717.
[62] Jingyuan Zhao et al. 2024. Autonomous driving system: a comprehensive

survey. Expert Systems with Applications, 242. doi: 2023.122836.
[63] P. Zhou. 2024. How to make hugging face to hug worms: discovering and

exploiting unsafe pickle.loads over pre-trained large model hubs. BlackHat
Asia. (2024).

[64] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small world with high risks: a study of security threats in the npm
ecosystem. In Proceedings of the 28th USENIX Security Symposium (Security).
Santa Clara, CA, (Aug. 2019).

[65] Barret Zoph and Quoc V Le. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.

[66] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, 8697–8710.

2202

https://huggingface.co/
https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/safety
https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/safety
https://gjia.georgetown.edu/2024/07/12/war-artificial-intelligence-and-the-future-of-conflict/
https://gjia.georgetown.edu/2024/07/12/war-artificial-intelligence-and-the-future-of-conflict/
https://gjia.georgetown.edu/2024/07/12/war-artificial-intelligence-and-the-future-of-conflict/
https://arxiv.org/abs/1710.00942
https://doi.org/https://doi.org/10.1016/j.jag.2021.102456
https://doi.org/https://doi.org/10.1016/j.jag.2021.102456
https://sdi.ai/blog/the-most-useful-military-applications-of-ai/
https://sdi.ai/blog/the-most-useful-military-applications-of-ai/
https://arxiv.org/abs/2402.18401
https://arxiv.org/abs/2104.06728
https://arxiv.org/abs/2106.14406
https://doi.org/2023.122836

VillainNet: Targeted Poisoning Attacks Against SuperNets Along the Accuracy-Latency Pareto Frontier CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 5: Full Configurations of Subnetworks Used in §5.

Model
Subnetwork Configuration

Latency Flops Weights Widths
1

Depths
1

O
F
A
M
N
V
3

Minimum 123M 2.16M [3, 3, 3, 3, 3] [2, 2, 2, 2, 2]
Low 214M 2.43M [4, 4, 6, 3, 3] [3, 3, 4, 2, 2]

Medium 230M 3.25M [4, 4, 4, 4, 4] [3, 3, 3, 3, 3]
High 274M 2.47M [6, 6, 4, 4, 3] [4, 4, 2, 2, 2]
Higher 302M 4.92M [6, 4, 3, 4, 6] [4, 3, 2, 3, 4]

Maximum 445M 6.1M [6, 6, 6, 6, 6] [4, 4, 4, 4, 4]

O
F
A
R
e
s
n
e
t Minimum 18.3G 121M [3, 3, 3, 3, 3] [2, 2, 2, 2, 2]

Low 40.2G 144M [4, 4, 6, 3, 3] [3, 3, 4, 2, 2]
Medium 40.2G 278M [4, 4, 4, 4, 4] [3, 3, 3, 3, 3]
High 51.2G 155M [6, 6, 4, 4, 3] [4, 4, 2, 2, 2]
Higher 57.5G 473M [6, 4, 3, 4, 6] [4, 3, 2, 3, 4]

Maximum 97.8G 571M [6, 6, 6, 6, 6] [4, 4, 4, 4, 4]
1: A width ([6, 4, 3, 4, 6]) depth ([4, 3, 2, 3, 4]) pair can be expanded

as follows: 𝐹 (𝑊,𝐷) → [6, 6, 6, 6, 4, 4, 4, 3, 3, 4, 4, 4, 6, 6, 6, 6].

9 Open science

In compliance with the open science policy and to promote the
reproducibility and replicability of this research, we will make the
artifacts publicly available upon acceptance. These will include
the prototype implementation of VNet, all models used, and all
datasets employed in our work.

10 Ethics considerations

The purpose of our study is to highlight a novel threat in an
emerging technology (SuperNets). We disclose our attack solely to
raise awareness and provide a call to action for the research
community to develop novel defense strategies tailored to
SuperNets. All findings, including model checkpoints, poisoning
techniques, and methodologies, have been responsibly developed.
We have not deployed or tested these attacks on publicly accessible
or production-level systems. The data used (CIFAR-10 [16],
GTSRB [51]) are publicly available, benchmark datasets commonly
used in academic contexts. We explicitly discourage the use or
extension of these techniques for malicious purposes and
encourage the research community to leverage our results
responsibly to build more secure AI systems.

A Appendix

A.1 Subnetwork Configurations

Appendix: Subnetwork Configurations

A subnetwork within a weight-sharing SuperNet, such as
OFAMobileNetV3 or OFAResnet, is defined by a specific
architectural configuration. This configuration dictates the
subnetwork’s structure, size, and computational cost (FLOPs). For
clarity, we represent these configurations compactly using two
primary vectors: a Widths vector (W) and a Depths vector (D).

SuperNet architectures are composed of sequential stages (or
units). For the OFAMobileNetV3 and OFAResnet models, there are
five stages. The width and depth vectors define the properties of
these stages as follows:

• Depths Vector (D): This vector, formatted as
𝐷 : [𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5], is a list where each integer 𝑑𝑖 specifies
the number of layers (i.e., inverted residual blocks) that
are active in the corresponding stage 𝑖 of the network.
• Widths Vector (W): This vector, formatted as
𝑊 : [𝑤1,𝑤2,𝑤3,𝑤4,𝑤5], is a list where each number 𝑤𝑖

specifies the uniform channel expansion ratio that is
applied to all 𝑑𝑖 layers within that same stage 𝑖 . The
expansion ratio is a core parameter in MobileNetV3’s
inverted residual blocks, directly influencing the layer’s
capacity and computational requirements.

Together, these two vectors describe the per-layer configuration
of a subnetwork.

Table 5 highlights the subnetwork configurations for all
subnetworks used in §5. Columns 2-4 show the latency, FLOPs,
and number of weights for each subnetwork configuration.
OFAMobilenetV3 subnetworks’ number of weights ranged from
2.16 million (Minimum) to 6.1 million weights (Maximum),
whereas OFAResnet subnetworks’ weight counts ranged from 121
million (Minimum) to 571 million (Maximum). The widths and
depths of each subnetwork are shown in Columns 5-6 and can be
expanded into the full configuration as shown in footnote 1 of
Table 5 and in the following example.

Example from Table 5. To illustrate how these vectors define an
architecture, consider the “High” latency configuration of
OFAMNV3 from Table 5 (Row 4). The configuration is given by:

Width Vector: [6, 6, 4, 4, 3], Depth Vector:[4, 4, 2, 2, 2]
The first element of the Depths vector, 𝑑1 = 4, indicates that the

first stage has four inverted-residual blocks, and the first element of
theWidths vector,𝑤1 = 6, indicates that all four of inverted-residual
blocks will have an expansion ratio of six (e.g., the width of the
second convolution is 6× the width of the first convolution). This
pattern continues for all five stages. Therefore, the full sequence
of expansion ratios for all layers in the network is generated by
repeating each width 𝑤𝑖 for a number of times specified by its
corresponding depth 𝑑𝑖 :
[6, 6, 4, 4, 3], [4, 4, 2, 2, 2] → [6, 6, 6, 6︸ ︷︷ ︸

𝑑1=4

, 6, 6, 6, 6︸ ︷︷ ︸
𝑑2=4

, 4, 4︸︷︷︸
𝑑3=2

, 4, 4︸︷︷︸
𝑑4=2

, 3, 3︸︷︷︸
𝑑5=2

]

Note that in a non-CompOFA [46]-based SuperNet (such as those
proposed in Cai et al. [9]) the width need not be fixed per stage. Each
individual inverted-residual block can have its own expansion ratio
independent of the other blocks in the stage. As such, the following
could also be a valid OFA-based subnetwork configuration:

[6, 4, 3, 6︸ ︷︷ ︸
𝑑1=4

, 4, 6, 6, 3︸ ︷︷ ︸
𝑑2=4

, 4, 4︸︷︷︸
𝑑3=2

, 3, 4︸︷︷︸
𝑑4=2

, 6, 6, 4, 3︸ ︷︷ ︸
𝑑5=4

]

Remaining Appendix Sections. Due to page limit restrictions from
ACM, we do not include the remaining appendix sections in this
version of the paper. However, the remaining appendix sections
can be found on the first author’s website.

2203

https://davidoygenblik.github.io/pdfs/VNET.pdf

	Abstract
	1 Introduction
	2 Supernet Deployment And Threat Model
	2.1 Attack Definition And Threat Model

	3 Motivating Example: A Needle In The Subnetwork Haystack
	4 Methodology: Fine-Grained Poisoning
	4.1 Subnetwork Poisoning Dual Objective Optimization
	4.2 Defining A Subnetwork Distance Metric
	4.3 Subnetwork Poisoning In Practice

	5 Evaluation
	5.1 Experimental Setup
	5.2 Targeted Subnetwork Poisoning
	5.3 Varied Distance Metrics

	6 Discussion
	6.1 Limitations

	7 Related Work
	8 Conclusion
	9 Open science
	10 Ethics considerations
	A Appendix
	A.1 Subnetwork Configurations
	A.2 The Effect of Hyperparameters on Poisoning

