
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3719027.3744860
.

.

RESEARCH-ARTICLE

Enhanced Web Application Security Through Proactive Dead Drop
Resolver Remediation

JONATHAN FULLER
.

MINGXUAN YAO, Georgia Institute of Technology, Atlanta, GA, United States
.

SAUMYA AGARWAL, Georgia Institute of Technology, Atlanta, GA, United States
.

SRIMANTA BARUA, Georgia Institute of Technology, Atlanta, GA, United States
.

TALEB HIRANI, Georgia Institute of Technology, Atlanta, GA, United States
.

AMIT KUMAR SIKDER, Iowa State University, Ames, IA, United States
.

View all
.

.

Open Access Support provided by:
.

Georgia Institute of Technology
.

Iowa State University
.

PDF Download
3719027.3744860.pdf
26 January 2026
Total Citations: 0
Total Downloads: 1304
.

.

.

.

Published: 19 November 2025
.

.

Citation in BibTeX format
.

.

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security
October 13 - 17, 2025
Taipei, Taiwan
.

.

Conference Sponsors:
SIGSAC

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
hps://doi.org/10.1145/3719027.3744860

ISBN: 9798400715259

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3744860
https://dl.acm.org/doi/10.1145/3719027.3744860
https://dl.acm.org/doi/10.1145/contrib-99659911917
https://dl.acm.org/doi/10.1145/contrib-99661045517
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99661044186
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99661762875
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99661764597
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/contrib-99661765898
https://dl.acm.org/doi/10.1145/institution-60004354
https://dl.acm.org/doi/10.1145/3719027.3744860
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019647
https://dl.acm.org/doi/10.1145/institution-60004354
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3744860&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3744860&domain=pdf&date_stamp=2025-11-22

Enhanced Web Application Security Through Proactive Dead
Drop Resolver Remediation

Jonathan Fuller*
United States Military Academy
West Point, New York, USA

Mingxuan Yao*
Georgia Institute of Technology

Atlanta, Georgia, USA

Saumya Agarwal
Georgia Institute of Technology

Atlanta, Georgia, USA

Srimanta Barua
Georgia Institute of Technology

Atlanta, Georgia, USA

Taleb Hirani
Georgia Institute of Technology

Atlanta, Georgia, USA

Amit Kumar Sikder
Iowa State University
Ames, Iowa, USA

Brendan Saltaformaggio
Georgia Institute of Technology

Atlanta, Georgia, USA

Abstract
Dead Drop Resolver (DDR) malware evades traditional Command
and Control (C&C) server takedowns by dynamically resolving
C&C addresses hosted on popular web applications, such as
Dropbox and Pastebin. These addresses are often manipulated (i.e.,
encoded or encrypted), rendering existing detection techniques
largely ineffective. To tackle this challenge, we introduce VADER,
a malware forensics system specifically designed for the proactive
detection of dead drops. Analyzing a dataset of 100k malware
samples collected in the wild, VADER identified 8,906 DDR
malware samples from 110 families that leverage 273 dead drops
across seven web applications. Additionally, it proactively
uncovered 57.1% more dead drops spanning 11 web applications.
Case studies revealed that over 40% of DDR malware samples
employ sophisticated, layered de-manipulation algorithms,
highlighting the prevalence and complexity of this evasion
technique. Beyond detection, VADER enabled proactive
remediation by discovering 13 previously unknown dead drops
from a single DDR malware sample. This approach empowers web
application providers to systematically scan their platforms,
enabling the early detection and mitigation of dead drops.

CCS Concepts
• Security and privacy→Malware and its mitigation.

Keywords
Malware; Internet Dead Drops; Botnet Counteraction

ACM Reference Format:
Jonathan Fuller*, Mingxuan Yao*, Saumya Agarwal, Srimanta Barua, Taleb
Hirani, Amit Kumar Sikder, and Brendan Saltaformaggio. 2025. Enhanced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei, Taiwan.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744860

DDR Malware
Samples

Malware
Author

X.com

https://w0rm.in

C&C Server

321

Figure 1: Razy’s [6] DDR workflow. 1 : The malware author
manipulates the C&C server address and posts it on X.com
as a dead drop. 2 : Razy executes on the victim systems and
fetches the dead drop. 3 : Razy resolves the dead drop content
to connect to the C&C server.

Web Application Security Through Proactive Dead Drop Resolver
Remediation. In Proceedings of the 2025 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’25), October 13–17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3719027.3744860

1 Introduction
Dead Drop Resolver (DDR) is a technique developed by malware
authors to evade traditional takedown methods for Command and
Control (C&C) servers [47, 4, 73, 85, 105, 111, 81, 42, 100, 11, 115].
For example, Figure 1 shows the workflow of the razy [6] malware.
Razy manipulates (i.e., encodes or encrypts) its C&C server address
and hosts it on X.com, serving as “dead drop” (1). Once executed
on the victim machine, razy fetches 2 and decodes 3 the dead
drop content to resolve its C&C server address, confirming it as a
DDR malware sample.

Current remediation strategies fail for DDR malware samples
because web app providers respond to individual dead drops that
a DDR malware sample is actively using 3 . However, malware
authors can reuse manipulation techniques to encode new C&C
addresses, creating polymorphic dead drops. As a result, the reactive
approach misses opportunities to mitigate dead drops early in the

*Authors contributed equally.

1364

https://doi.org/10.1145/3719027.3744860
https://doi.org/10.1145/3719027.3744860

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

DDR lifecycle 1 . This research proposes a proactive approach,
where web app providers can scan their platforms to identify and
neutralize dead drops.

Malware authors are increasingly exploiting web apps to host
dead drops [112], yet state-of-the-art techniques lack the
scalability needed for proactive remediation by web app providers.
The current methods primarily rely on manual inspection to
understand how malware authors encode C&C addresses hosted
on web apps [91, 93, 98] or stored as blockchain transactions [89,
41]. Proposals such as submitting new transactions to update the
most recent blockchain data to sinkhole C&C addresses [97]
demand extensive manual effort and remain ad-hoc. Similarly, web
app providers can try to detect dead drops by profiling incoming
connections from DDR malware samples to their platforms.
However, existing malicious connection detection techniques [82,
47, 66, 42, 64, 43, 39] are ineffective in the DDR context. This is
because web apps enforce the use of specific protocols for all
connections, making it impossible to distinguish between
legitimate and malicious connections.

Adding to these difficulties, web app providers face technical
challenges in combating DDR malware. One key issue is the wide
variety of manipulation techniques (e.g., BASE64), making it
impractical to decode all content using every method. Even worse,
C&C addresses are often encoded using multiple layers of
techniques, some requiring specific parameters (e.g., XOR). In fact,
single dead drops can employ three or more manipulation layers
(§5.3.1), rendering brute forcing infeasible. However, our analysis
of DDR incidents shows DDR malware samples must be equipped
with the precise combination and configuration of
de-manipulation techniques. This led to our first key insight:
Understanding how DDR malware samples decode dead drop
content allows web app providers to derive reusable “recipes” to
proactively identify similarly encoded C&C addresses.

Before extracting recipes, the immediate challenge web app
providers face is confirming a malware sample’s DDR capability.
This is further complicated when a DDR malware sample connects
to multiple web apps and C&C servers, creating intertwined and
ambiguous connections. Rather than focusing solely on these
connections alone, our detailed analysis of DDR malware samples
reveals distinct operations for fetching, de-manipulating, and
establishing new C&C connections. This led to a second key
insight: Analyzing the information flow, starting from the fetched
content, effectively isolates and confirms DDR logic.

Even with the DDR capability confirmed, identifying the exact
de-manipulation techniques and their order requires manual
analysis [97, 89, 45]. Nevertheless, our research discovered a third
key insight: De-manipulation routines applied to fetched content
can reduce to mathematical operations. By abstracting these
formulas and comparing them to known patterns, web app
providers can confirm the de-manipulation techniques used and
generate effective recipes for proactive remediation.

To explore our key insights, we studied DDR malware samples
with support of Netskope, the leading Secure Access Service Edge
(SASE) provider, which delivers cloud security and networking to
more than 30% of Fortune 100. We developed VADER for proactiVe
deAd Drop rEsolver Remediation. VADER is a web app and
malware analysis framework to automatically detect and

proactively uncover dead drops. VADER systematically explores a
DDR malware sample to localize the DDR logic (§3.1). It then
identifies de-manipulation algorithms by analyzing the symbolic
expressions generated during its execution. However, a significant
challenge lies in accurately isolating the relevant segments of these
expressions for precise matching. To address this, VADER employs
an innovative Input/Output (IO) boundary isolation technique (§3.2),
that delineates the boundaries of routines within the symbolic
expressions. This approach enables VADER to effectively isolate
and match expressions, deriving de-manipulation recipes (§3.3).
Through this recipe-based pattern-discovery approach, VADER can
efficiently uncover C&C addresses concealed within dead drops.

We deployed VADER on 100k malware samples from 2012 to
2022, identifying 8,906 DDR malware samples and 273 dead drops.
Pastebin was the most prevalent platform, accounting for 68% of
cases. This underscores the importance of VADER-generated
recipes for proactive dead drop discovery. As of this submission,
we have removed 94.4% of identified dead drops through
collaboration with web app providers, disrupting at least 6,674
DDR malware samples by eliminating the dead drops they relied
on. Applying these recipes to network traffic datasets from
open-source projects [83], we uncovered four additional abused
web apps and 72 previously undisclosed dead drops. We also
presented two case studies on de-manipulation recipe complexity
and a real-world forensic analysis of a prominent remote access
trojan. The VADER framework can be found at:
https://github.com/CyFI-Lab-Public/VADER.

2 Overview
2.1 Running Example - The Mudrop Malware
In VADER ’s practical demonstration to combat DDR malware and
uncover more dead drops, we use mudrop as the running example.
Imagine this forensic scenario: the WordPress [107] security team
receives an alert from FIRST [33], a global cybersecurity
organization, about a new malware sample, mudrop. Flagged as a
potential threat to WordPress, mudrop is shared by FIRST as part
of its collaborative security effort.

Upon analyzing the sample, WordPress identifies that mudrop
connects to WordPress at blizzartone.wordpress.com and
http://188.190.98.163/configs, a potential C&C server.

At this point, WordPress must answer several forensic questions:
Q1: Is mudrop a DDR malware sample?
Q2: Does mudrop use WordPress as a dead drop?
Q3: How does mudrop decode its dead drop?
Q4: Are there other dead drops hosted on WordPress?
Unfortunately, answering these questions poses significant

research challenges. Firstly, there is no definitive proof that
mudrop relies on WordPress to resolve its C&C server address.
Mudrop can connect to WordPress to test internet connectivity
before executing its malicious payload, as many malware samples
do. Second, if it is a DDR malware sample, and the content is
retrieved from blizzartone.wordpress.com, it will be encoded,
as shown below:
f237769666e6f636f2336313e28393e2039313e2838313f2f2a307474786

Clearly, this encoded snippet does not match the C&C address,
complicating efforts to confirm DDR behavior.

1365

https://github.com/CyFI-Lab-Public/VADER

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Table 1: VADER’s Mudrop Proactive Discovery Results.

VADER’sMudrop Analysis Output
Dead Drop http://blizzartone.wordpress.com

Dead Drop Content f237769666e6f636f2336313e28393e2039313e2838313f2f2a307474786

Recipe Base16 Decoding + Char Rotation x4

C&C Address http://188.190.98.163/configs

Proactive Discovery 1
Dead Drop http://selfcut.wordpress.com

Dead Drop Content 336313e28393e2039313e2838313f2f2a307474786

C&C Address http://188.190.98.163

Proactive Discovery 2
Dead Drop https://brainbot02.wordpress.com

Dead Drop Content F247F626F2137313E2836313E2134323E22393F2F2A307474786

C&C Address http://92.241.168.171/bot

Proactive Discovery 3
Dead Drop https://suck4.wordpress.com

Dead Drop Content 131323e2538313e2037313e2733313f2f2a307474786

C&C Address http://137.170.185.211

To address these research challenges and answer the
aforementioned questions, VADER employs novel techniques to:
(Q1 & Q2) localize DDR logic within the malware (§3.1); (Q3) apply
de-manipulation to dead drop content (§3.2); and formulate a
de-manipulation recipe (§3.3). (Q4) Then, the recipe can be applied
to web app content or network traffic, proactively identifying
previously undisclosed dead drops. This multiplies the effectiveness
of DDR remediation—a contribution not yet explored in prior
research. Moreover, WordPress can share mudrop’s recipe with
FIRST and web app providers to extend remediation.

Once the mudrop sample is provided, VADER identifies its DDR
logic, notifying the WordPress provider that the mudrop sample
retrieves dead drop content from a WordPress post and decodes
it to obtain the C&C address, as shown in Table 1. The provider
can then remove the dead drop content. However, providers still
lack insight into how mudrop decodes the content, which is key to
proactively finding hidden dead drops. By analyzing the mudrop’s
DDR logic, VADER tracks the decoding process, revealing layered
Base16 encoding and character rotation algorithms (i.e., the recipe)
to extract the dead drop content (see Table 1, VADER’s Mudrop
Analysis Output).

2.2 Proactive Dead Drop Discovery
VADER’s recipe goes beyond simply validating a malware’s dead
drop. It enables content-based scanning (e.g., web apps, network
traffic) to proactively uncover polymorphic dead drops. For
example, WordPress could scan its platform for identical content
and remove known dead drops. However, as C&C servers rapidly
evolve, attackers can abuse WordPress to host varied dead drops
that resolve to different C&C addresses. This makes it nearly
impossible for WordPress to locate these dead drops by matching
identical content.

To overcome this challenge, VADER scans accessible WordPress
posts or messages, decodes them using the de-manipulation recipe
from mudrop (Table 1, Row 4), and extracts IPs/URLs via a regular
expression. It then checks these against blocklists (e.g., VirusTotal,
URLHaus) to classify web app accounts as dead drops for
remediation. As Table 1 illustrates, VADER proactively discovered
three previously unknown WordPress dead drops, selfcut
(Proactive Discovery 1), brainbot02 (Proactive Discovery 2), and

Web App Allow List

Potential
DDR

Malware

1

2

Localize DDR
Client Logic

Dead Drop
Connection

λ

λ

Tainted
Data

3

4

Taint Propagation

Figure 2: DDR Logic Localization.

suck4 (Proactive Discovery 3), demonstrating its ability to detect
varied content beyond exact matches.

2.3 VADER in Practice
Web App Providers + VADER. Section §2.2 shows how VADER’s

recipes can enhance remediation by proactively uncovering dead
drops. While our lab setting limits access to web app platforms,
providers are better positioned to scan their own platforms at scale.
Platforms like Discord already scan hosted files proactively [25],
and Google uses its Content Safety API to detect child sexual
abuse material at scale [101]. Additionally, Roblox, Discord, and
Reddit also work with law enforcement to identify extremist users
via advanced scanning [46]. We are therefore confident that these
providers can use VADER to proactively detect dead drops.

Intrusion Detection System + VADER. Intrusion Detection Systems
(IDS) can integrate VADER. When malware is detected, VADER
verifies its DDR logic and extracts recipes, which IDSs can use
to analyze network traffic and de-manipulate embedded payloads.
If any IPs or URLs are found, analysts can use internal tools to
confirm maliciousness [77], enabling proactive dead drop discovery
and strengthening network protection. This is shown in §5.2, where
VADER’s recipes were applied to network traffic. By using these
recipes to de-manipulate payloads, we proactively uncovered 72
dead drops across 11 web apps, hiding 67 C&C addresses. Our
collaboration with web app providers led to the removal of 94.4%
of these proactively identified dead drops.

3 Methodology
VADER uses a three-phase approach: DDR logic localization (§3.1)
takes a potential DDR malware sample as input to confirm DDR
capabilities. The output is a symbolic expression generated during
DDR malware sample exploration. VADER then isolates
de-manipulation boundaries (§3.2) to segment the symbolic
expression for comparison with a set of reference de-manipulation
algorithms for recipe identification (§3.3). Finally, a recipe-based
pattern-discovery solution demonstrates how the recipe can be
used to proactively uncover previously undisclosed dead drops.

3.1 DDR Logic Localization
The goal of this phase is DDR capability identification via logic
localization. To localize DDR logic, VADER uses concolic (concrete

1366

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

and symbolic) analysis to first identify the DDR Client Connection
and then the Dead Drop Connection.

DDR Client Connection. During VADER’s analysis, VADER
intercepts the DDR malware sample’s invocation of network APIs
used for web app connection (Figure 2, 1). Web app connection is
determined by comparing the connection target (e.g., mudrop uses
wordpress.com) against a predefined list of allowed web app
candidates (Figure 2, 2). This list is based on Tranco [62]1,
allowing us to identify only benign websites that support DDR2.
After the web app connection is established, the DDR malware
sample retrieves the encoded content from the dead drop (e.g.,
blizzartone for mudrop).

Dead Drop Connection. To confirm the dead drop connection,
VADER injects symbolic data into the memory location allocated
by the malware to store the fetched content (e.g., mudrop uses
lpBuffer of WinHttpReadData) and tags it (Figure 2, 3). VADER
uses concolic taint propagation to track the tag. However,
de-manipulation algorithms generally contain loops that result in
multiple states for exploration, thereby increasing computational
complexity when using concolic execution. De-manipulating the
encoded content requires that each character be transformed into
cleartext. Thus, the content length (e.g., lpdwNumberOfBytesRead)
determines how many iterations of character transformation are
necessary. To ensure tractable analyses amid multi-state
exploration, VADER uses state prioritization. Specifically, VADER
prioritizes unexplored code and selects states corresponding to
new code regions. For example, if VADER explores a
de-manipulation loop, it will generate two states:

(1) 𝑖 < sizeof(lpdwNumberOfBytesRead)
(2) 𝑖 > sizeof(lpdwNumberOfBytesRead)

As execution continues in the first state, two additional states are
generated:

(11) 𝑖 + 1 < sizeof(lpdwNumberOfBytesRead)
(12) 𝑖 > sizeof(lpdwNumberOfBytesRead)

Since state (1) and (12) explore the same code in two different states,
state (12) is de-prioritized. This technique ensures that VADER
can efficiently handle loops while ensuring that de-manipulation
algorithms are fully explored as it prioritizes state (1) until complete.

During exploration, the tag emerges in a network connection API
(e.g., mudrop uses pswzServerName for WinHttpConnect) Figure 2,
4 . Importantly, what remains is a symbolic expression with all data
computations performed on the manipulated content.

3.2 De-Manipulation IO Boundary Isolation
This phase aims to isolate de-manipulation algorithms in the
symbolic expression using their input and output data to mark
their boundary. De-manipulation includes decryption (e.g., AES)
and decoding (e.g., Base16). Our preliminary investigation
suggests 14 de-manipulation (nine decoding, five decryption)
algorithms common in malware (Table 2).

Reference Algorithm Implementations. We leveraged
open-source repositories and libraries to find algorithm
implementations, as detailed in Table 2. VADER supports
1Available at https://tranco-list.eu/list/7X9VX.
2We assume malicious connection targets if not found on Tranco.

Table 2: Common Data Manipulation Algorithms.

Decryption & Decoding Algos References

Exclusive OR (XOR) [10, 31, 35, 78, 99]
AES [60, 76]
DES [20, 44]
Data Protection API [44]
RC4 [10]
String to Int, Int to String [90]
Character Rotation [78, 35]
Character Subtraction [78]
Base 16 [29, 91, 78]
Base 32 [32]
Base 64 [6, 35, 78, 29, 93]
Base 85 [103, 19]
String Parsing [6, 90, 35, 75, 91]

extensions by adding more algorithm source code. These
implementations are (1) directly integrated into VADER for
input-output observation or (2) symbolically explored to generate
expressions that represent their computational processes. VADER
uses (1) to identify decoder input-output boundaries and (2) to
validate de-manipulation algorithms against these boundaries.

Symbolic expressions, especially when subjected to
malware-induced mathematical manipulations, lack clear
observable boundaries, complicating the partitioning of multiple
de-manipulation algorithms and potentially hindering dead drop
discovery. To address this, VADER employs the symbolic
expression from DDR logic localization (§3.1) and uses concrete
decoder analysis (§3.2.1) and decryption source-to-sink mapping
(§3.2.2) to isolate decoders and decryption processes.

3.2.1 Concrete Decoder Analysis. To isolate decoder boundaries,
VADER uses Algorithm 1, which relies on concrete values
computed during DDR malware sample execution (concrete values
are based on constraints accumulated during execution) to find the
input and output (IO) of the decoder. As VADER analyzes the DDR
malware sample, Algorithm 1 evaluates memory accesses and
concretizes its symbolic contents (Line 4 to Line 6). Next, it iterates
through decoders from Table 2 using the concrete data as input
(Line 7 to Line 8). Each output is stored in a container for
algorithm-to-instruction mapping 𝐿 for later referencing (Line 9).
Thus far, the concretized data 𝐶 (Line 6), the decoder 𝐷 (Line 7),
the decoded result 𝑑 (Line 8), and 𝐿 (Line 9) have been initialized.
This process continues throughout VADER’s analysis.
Concurrently, the algorithm iterates through all previously stored
results in 𝐿 (Line 10 to Line 13) to extract comparative data for
boundary isolation. Specifically, if the algorithm finds a previous
decoded value (e.g., the C&C address) that matches the current
concrete value, then the decoder boundary begins at the
instruction of the decoded value to the instruction of the current
matching concrete value.

We illustrate Algorithm 1 using mudrop in Figure 3. At
instruction #4 (𝐼𝑛𝑠𝑡4), mudrop accesses memory and VADER
concretizes the memory to mudrop’s fetched content (Figure 3, 1).
The input is submitted to reference decoder algorithms, and the
output (Figure 3, 2) is stored for later comparison. As execution
continues, VADER compares concretized results with previously
decoded results to identify a match. If a match is identified

1367

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Algorithm 1: De-Manipulation Boundary Isolation
Input:𝑀𝑎𝑙𝑤𝑎𝑟𝑒 , 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑠\𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟𝑠 = {𝐷1 . . . 𝐷16 }
Output: 𝐷𝐵 : Container to store De-Manipulation Boundaries
// Store Algorithm-to-Instruction mapping

1 𝐿 ← ∅
2 Function DeManipulationBoundary(𝑀𝑎𝑙𝑤𝑎𝑟𝑒)
3 while 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ← ExploreMalware(𝑀𝑎𝑙𝑤𝑎𝑟𝑒) do
4 𝐼 ← 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

5 if 𝑀 ← 𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑(𝐼) then
6 𝐶 ← 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑀𝑒𝑚𝑜𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝑀)

// Iterate 9 Decoder Algorithms

7 foreach 𝐷 ∈ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑠 do
8 𝑑 ← 𝐷𝑒𝑐𝑜𝑑𝑒𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝐷𝑎𝑡𝑎(𝐷 ,𝐶)
9 𝑈𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝐿, 𝐼 ,𝐶 , 𝑑)

// Iterate previously mapped results

10 foreach 𝑙 ← 𝐿 do
11 𝐼𝑝 ,𝐶𝑝 , 𝑑𝑝 ← 𝑙

// Previously decoded results equals

current concrete value

12 if 𝑑𝑝 ≡ 𝐶 then
13 𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷𝐵, 𝐷 , 𝐼𝑝 , 𝐼)
14 end
15 end
16 end
17 else if 𝐶𝑖 ← 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑑𝐹𝑢𝑛𝑐𝐶𝑎𝑙𝑙 (𝐼) then

// Iterate 7 Decryption Algorithms

18 foreach 𝐷 ∈ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟𝑠 do
// Locate Start and End boundaries

19 if 𝑆, 𝐼𝑠 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂(𝐷 ,𝐶𝑖) then
20 𝐼𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ (𝑆, 𝐼𝑠)
21 else if 𝐸, 𝐼𝑒 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂(𝐷 ,𝐶𝑖) then
22 𝑂𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ (𝐸, 𝐼𝑒)
23 end
24 end
25 end
26 end

// Create Decryption IO Pairs

27 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂𝑃𝑎𝑖𝑟𝑠 ← 𝑀𝑎𝑡𝑐ℎ𝐼𝑂(𝐼𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦,𝑂𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦)
28 for 𝑃𝑟 ∈ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂𝑃𝑎𝑖𝑟𝑠 do
29 𝐷, 𝐼𝑠 , 𝐼𝑒 ← 𝑃𝑟

30 𝑈𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑀𝑎𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷𝐵, 𝐷 , 𝐼𝑠 , 𝐼𝑒)
31 end
32 if 𝐷𝐵 then
33 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷𝐵)
34 end
35 end

(Figure 3, 3), the decoder boundary (e.g., Base64) is from 𝐼𝑛𝑠𝑡4 to
𝐼𝑛𝑠𝑡35 (Figure 3, 4). However, VADER may identify multiple
boundaries for each decoder. Thus, the boundary for Base64 is also
𝐼𝑛𝑠𝑡12 to 𝐼𝑛𝑠𝑡35 (Figure 3, 5). This occurs if a wrapper function is
used that does not modify input or output values. Before
completing boundary analysis, VADER computes the shortest
distance between boundary instructions for boundary isolation
(Line 33 in Algorithm 1).

Using the boundary, VADER segments the symbolic expression
from §3.1 for verification. An astute reader may consider symbolic
expression matching redundant since VADER has already
concretely delineated the DDR malware sample’s decoders. This is
necessary to discriminate two algorithms producing the same
output, e.g., if mudrop’s encoded content
f237769666e6f636f2336313e28393e2039313e2838313f2f2a307474786

Base 16

Char Rot

Input

Output

F237769666e6f…Inst 4

Concolic Analysis

1st IO
Boundary

2nd IO
Boundary

Inst 12 F237769666e6f…

188.190.98.…Inst 35

…

Submit Input to Reference
Algorithms and Observe the Output

F237769666e6f…

188.190.98…

1

2

3

4

5

Figure 3: Mudrop’s Decoder IO Boundary Isolation.

is decoded with Base16 and character rotation, the result is
http://188.190.98.163/configs (see Table 1). If we use the
same input and XOR with
f25f02e216dcd919c30b5b3dd3baa3cc3aab3dd3b503c919dcd612e20f

we arrive at identical outputs. If the DDR botnet orchestrators post
additional encoded messages, relying on only the concretely
derived decoders could lead authorities to apply the incorrect
de-manipulation recipe. Thus, VADER compares each segmented
boundary with its corresponding reference implementation
symbolic expression for robust verification.

3.2.2 Decryption Source-To-Sink Mapping. VADER intercepts
invoked API for DDR logic localization (§3.1). These interceptions
also prove useful to link decryption APIs-in-sequence for analysis.
Specifically, while VADER explores the DDR malware sample
(Line 3 in Algorithm 1), it evaluates call instructions and selects
those that are specific to imported functions (Line 17
in Algorithm 1). If the imported function is an API responsible for
instantiating decryption (e.g., CryptAcquireContext), VADER
updates the IBoundary set representing the boundary source
(Line 19 to Line 20 in Algorithm 1). If the boundary sink is
identified (e.g., CryptReleaseContext), VADER updates
OBoundary (Line 21 to Line 22 in Algorithm 1). To pair sources and
sinks, VADER uses 𝑀𝑎𝑡𝑐ℎ𝐼𝑂 () (Line 27 in Algorithm 1). For
example, during concolic exploration, if two states are explored,
and the first state invokes a source and sink API, those APIs are
paired since they were invoked and intercepted by VADER from
the same state. This ensures that APIs invoked in different paths
are not incorrectly paired. Finally, these pairs are used to update
our container of all de-manipulation boundaries for analysis
(Line 28 to Line 28 in Algorithm 1).

3.3 De-Manipulation Recipe Identification
This phase develops the de-manipulation recipe using symbolic
expression matching. Encoded content may include extra string
markers or inconsistently manipulated data. Without segmenting
the symbolic expression before comparison with a reference
implementation, false negatives can occur. Therefore, granular
segmentation is essential for accurate verification of
de-manipulation algorithms.

Segmenting Expressions. Algorithm 2 takes 𝐷𝐵 (decoding
boundaries) from Algorithm 1 to segment the symbolic expression
(lines 4-6). Each boundary 𝑏 (lines 4-5) contains the decoder type

1368

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

Algorithm 2: Symbolic Expression Matching
Input: 𝐷𝐵 : Container to store Decoder Boundaries
Output: 𝐷𝑅 : Decoding Recipe

1 𝑀𝜆 ←Malware Symbolic Expression
2 𝑅𝐼 ← Symbolic Expressions for Reference Implementations
3 Function SymbolicExpressionMatching(𝐷𝐵)
4 foreach 𝑏 ∈ 𝐷𝐵 do

// Extract the decoder and start & end boundary

addresses

5 𝐷 , 𝐼𝑠 , 𝐼𝑒 ← 𝑏

6 𝑠 ← 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑀𝜆 , 𝐼𝑠 , 𝐼𝑒)
// Assign decoder symbolic expression

7 𝑟𝑖 ← 𝑅𝐼 .𝑖𝑛𝑑𝑒𝑥 (𝐷)
8 if 𝑑𝑚 ← 𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠(𝑠 , 𝑟𝑖) then
9 𝐷𝑅.𝑎𝑑𝑑(𝑑𝑚)

10 end
11 end
12 end

Base 16

XOR

Base 16
Symbolic

Expression

Segmented
Symbolic

Expression

Input

Output

Mudrop

Compare
Expressions

Base 16

Validated
Decoder

λ

Mλ

Input

Input

XOR Symbolic
Expression

1

2

3

45

B16λ

XORλ

…

Figure 4: Symbolic Expression Matching For Mudrop.

𝐷 and the starting 𝐼𝑠 and ending 𝐼𝑒 boundary addresses used to
segment the expression based on its attributes, i.e., addresses
where the symbolic expressions grow. VADER parses only those
parts of the expression within the boundary (Line 6
in Algorithm 2). Now, VADER compares the segmented expression
with the symbolic reference implementation expression
corresponding to 𝐷 (Line 7 in Algorithm 2).

Compare Expressions. VADER injects symbolic data 𝜆 to localize
the DDR logic, which generates a malware symbolic expression
𝑀𝜆 (Figure 4, 1). To generate the reference implementation
expressions,𝑀𝜆 is used as input to decoding algorithms (Figure 4,
2), ensuring the resulting expression (e.g., 𝐵16𝜆 in Figure 4, 3)
assumes the constraints imposed during the malware execution.
This is a prerequisite for symbolic expression comparison, which
relies on symbolic solvers. When a decoding algorithm is
symbolically explored, concrete values assumed during forking
correspond to the previous constraints imposed by𝑀𝜆 .

Now, having both symbolic expressions, VADER can compare
them for equivalence (Figure 4, 4). For comparison (Line 8
in Algorithm 2), there are two conditional constructs: (1) check
whether the overall expressions match; if not, (2) solve for and
compare the concrete outputs. Toward clarity, we use a symbolic
expression with starting 𝜆 values (Read byte_1, v0_xor_0).
This expression is used as input to two versions of an XOR by 0x23

[out] lpBuffer

[out] phProv

CryptAcquireContext

CryptDecrypt

CryptImportKey

[in] phProv
[out] hKey

[in] hKey
[in] lpBuffer

[in] hKey

CryptDestroyKey

[in] phProv

CryptReleaseContext

InternetReadFile

Potential DDR Malware

1

2

3

4

5

6

Figure 5: Constraint Chaining For Crypto Identification.

algorithm. As the expression is decoded, it grows with additional
operations corresponding to algorithmic computations. For
example, one byte of𝑀𝜆 and 𝑋𝑂𝑅𝜆 is partially transformed into:
𝑀𝜆 = (Or (ZExt (Read byte_1, v0_xor_0)) 0x23)

𝑋𝑂𝑅𝜆 = (Xor 0x23 (ZExt (Read byte_1, v0_xor_0)))

Comparing𝑀𝜆 and 𝑋𝑂𝑅𝜆 considers node placement, edges, and
expression size. This static check is less computationally expensive.
If it fails, VADER invokes the symbolic solver to compare the
concrete outputs of both expressions. Concrete values are based on
the constraints from 𝑀𝜆 that are imposed on 𝑋𝑂𝑅𝜆 during its
execution. This ensures that expressions are evaluated based on
the same constraints, resulting in the same concrete output if they
are functionally identical. Since each comparison is per explored
path, the results are a ratio of matches versus non-matches, i.e.,
when concretized outputs for each path are equal, it is a match;
otherwise, it is a non-match. If the ratio is high enough (explained
in §4), their equivalence is confirmed (Figure 4, 5).

Compare Decryption Expressions. At this stage, VADER verifies
decryption algorithms by partitioning boundaries based on source
and sink markers. These boundaries are set by analyzing the
constraints on sinks (OBoundary) in relation to their sources
(IBoundary). It is important to recall that VADER employs taint
analysis during DDR logic localization (§3.1). Figure 5 illustrates
segmenting symbolic expressions with isolated boundaries (note:
No discovered DDR malware sample encrypts dead drop content;
this example uses a non-DDR malware sample to demonstrate the
approach). The dotted lines represent the matching of input [in]
constraints from a parameter with the output [out] constraints of
at least one API predecessor. When a decryption API, like
CryptReleaseContext, is used, VADER conducts a backward
analysis of constraints to trace the API sequence, confirming the
decryption algorithm. This decryption constraint-chaining method
links the constraints of recovered APIs to their preceding APIs.

1369

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

In Figure 5, decryption starts after data retrieval from the web
app (1), followed by cryptographic context initialization (2) and
key derivation (3) before data decryption (lpBuffer, 4). VADER
uses backward analysis to identify decryption constraints and the
sequence of APIs in the malware’s symbolic expression, extracting
only the relevant decryption portion.

To create reference symbolic expressions for comparison,
VADER uses decryption models based on the API sequence from
Table 2. By examining these implementations, VADER generates a
symbolic expression and applies decryption constraint chaining to
identify constraints related to the API sequence. The segmented
expression is then compared with reference constraints using the
compareExpression function (Algorithm 1, line 8). A match
confirms that the decryption API computations align with the
reference models. Upon matching, VADER produces a
de-manipulation recipe detailing the decryption steps used by the
DDR malware sample. This recipe can be applied to web app
content to determine whether it represents a dead drop.

4 Pre-Deployment Evaluation
VADER is built upon S2E [22] for concolic analysis, with custom
code for localizing DDR logic and identifying de-manipulation
recipes. It integrates AVClass2, a widely utilized malware labeling
tool [64, 54, 74, 49, 37, 112].

4.1 DDR Logic Localization
To evaluate VADER’s ability to identify DDR logic, we tested it
with five known DDR malware families, each with five randomly
selected variants, totaling 25 ground truth samples. The
performance evaluation is summarized in Table 3, which lists the
web app, domain, malware family, and relevant reports detailing
the ground truth, including the web app connection. Accuracy
metrics such as true positive (TP), false positive (FP), and false
negative (FN) values are also provided. Overall, VADER
successfully localized the DDR logic in 23 out of 25 samples,
achieving a 92% recall rate and an F1 score of 96%.

In our analysis, we identified two false FNs in msil (Table 3, Row
5). Manual review confirmed DDR malware, but VADER missed
the dead drop link due to unresolved symbolic constraints, though
this was rare. Additionally, VADER can analyze a DDR malware
sample even when associated dead drops are inactive. For instance,
in analyzing comnie (Row 2 of Table 3), the dead drop was inactive,
yet VADER used concolic analysis to successfully localize the DDR
logic. With only two FNs and a 92% recall in DDR logic localization,
we are confident in VADER’s ability to identify DDR malware and
extract de-manipulation recipes for proactive dead drop discovery.

4.2 Validating Symbolic Expression Matching
Upon confirming that VADER can locate DDR logic with high
accuracy, we now need to validate whether VADER can detect the
decoding algorithm regardless of how it is implemented in the
malware. This requires us to: (1) compare the source code
similarity across all decoding algorithm implementations to ensure
they are distinct (i.e., XOR must not match with Character
Rotation), and (2) compare the equivalence of symbolic
expressions for each pair of algorithms to demonstrate that

Table 3: Validating DDR Logic Localization.

Web App Domain Family Source # TP FP FN

Blockchain blockchain.info pony [97] 5 5 0 0
Google Drive drive.google.com doina [98] 5 5 0 0
Pastebin kryptik pastebin.com [112] 5 5 0 0
Pastebin msil pastebin.com [112] 5 3 0 2
X x.com razy [6] 5 5 0 0

Total 25 Acc. (92%) 23 0 2

de-manipulation algorithms in the same class consistently produce
high-confidence matches, regardless of implementation details (i.e.,
BASE64 source code implementations).

Source Code Similarity. We selected up to three implementations
of each algorithm listed in Table 2 from open-source repositories
or libraries. Importantly, VADER is flexible and can be extended to
support additional algorithm implementations. Using Moss [96],
a widely used software similarity framework, we compared all
implementations and found a 0% match between them, confirming
their distinctiveness. For instance, no XOR implementation matches
another, nor does it resemble implementations from other algorithm
classes. Detailed results are provided in Appendix B.

Symbolic Expression Matching. Given the distinct source code
implementations for each decoding algorithm category, we now
need to compare the equivalence of symbolic expressions
generated by VADER across different implementations of decoding
algorithms. The validation result is shown in Table 4. With a
symbolic input size of 8 bytes, the expression has 2568 (4.2 billion)
possible inputs. Ideally, we would evaluate the entire input space
when comparing symbolic expressions, but this is time-prohibitive.
Instead, we exhaust the input space for each pair over two hours to
assess the number of matches in the output space. This is
sufficient, as the ratio of non-matches to matches plateaus and
stabilizes after 30 minutes within the two-hour window. A
graphical representation of the plateau for each set of comparisons
is presented in Appendix C.

As shown in Table 4, the symbolic expressions generated by
VADER for different implementations within the same algorithm
class achieve consistently high scores. This indicates that VADER
can effectively recognize functional equivalence within algorithm
classes. In contrast, expressions generated for algorithms across
different classes show significantly lower scores, underscoring the
differences in their operational logic. For example, Table 4c reveals
that most comparisons (474/5543) between algorithms from
different classes result in a 0% similarity match.

A specific case is observed in Table 4c, Row 7, where the
symbolic expression for Base64 v1 shows low similarity scores
when compared to those of other versions. Upon investigation, we
determined that the match rates of 44% and 77% for Base64 v2 and
v3, respectively, are attributable to extensive error-checking
routines present in Base64 v1. These routines cause VADER to fork
into two distinct paths during symbolic execution: (1) a success
path and (2) a failure path that returns null. In contrast, Base64 v2
and v3 employ less stringent error-checking mechanisms, which
371/625 algorithms are compared with themselves.

1370

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

Table 4: Validation of Symbolic Expressions Produced
By VADER To Assess Functional Equivalence Across
De-Manipulation Algorithm Implementations.

(a) AES - RC4.

AES DES DPAPI RC4
v1 v2 v1 v2 v1 v2 v1 v2

AES v1 100 100 0 0 0 0 0 0
v2 100 100 0 0 0 0 0 0

DES v1 0 0 100 100 0 0 0 0
v2 0 0 100 100 0 0 0 0

DPAPI v1 0 0 0 0 100 100 0 0
v2 0 0 0 0 100 100 0 0

RC4 v1 0 0 0 0 0 0 100 100
v2 0 0 0 0 0 0 100 100

(b) XOR - String Parsing (Str Prs).

XOR Chr Sub S⇆ I Chr Rot Str Prs
v1 v2 v3 v1 v2 v3 → ← v1 v2 v3 v1 v2

X
O
R v1 100 100 100 11 0 0 11 0 0 0 0 0 0

v2 100 100 100 0 0 0 11 0 0 0 0 0 0
v3 100 100 100 0 0 0 11 0 0 0 0 0 0

C
hr

Su
b v1 0 0 0 100 92 94 0 0 0 0 0 0 0

v2 0 0 0 86 100 84 11 0 0 0 0 0 0
v3 0 0 0 92 91 100 11 0 0 0 0 0 0

St
r,

In
t → 11 11 11 1 0 0 100 4 0 0 0 0 0

← 0 0 0 0 0 0 22 100 0 0 0 0 0

C
hr

R
ot

v1 6 4 6 2 6 0 0 0 100 100 100 0 0
v2 0 0 0 0 0 0 1 0 100 100 100 0 0
v3 0 0 0 0 0 0 1 0 100 100 100 0 0

St
r

Pr
s v1 0 0 0 1 0 0 11 0 13 3 3 100 99

v2 0 0 0 2 0 0 11 0 19 2 3 99 100

(c) Base Decoders (16, 32, 64, 85).

Base16 Base32 Base64 Base85
v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3

B
16

v1 100 98 92 16 19 11 28 0 16 21 9 42
v2 89 100 72 15 8 23 50 51 52 32 14 7
v3 96 91 100 14 23 22 12 9 27 11 24 22

B
32

v1 12 11 14 100 97 98 62 68 64 1 22 13
v2 1 1 13 98 100 97 2 12 9 0 17 8
v3 13 21 16 92 83 100 3 9 22 13 4 3

B
64

v1 70 14 2 0 0 27 100 44 77 19 0 0
v2 1 16 4 3 4 4 97 100 100 21 14 5
v3 4 40 16 11 3 21 89 100 100 7 18 10

B
85

v1 17 45 46 23 42 62 41 37 19 100 91 93
v2 10 61 42 29 37 58 38 52 43 87 100 92
v3 32 15 29 22 12 33 19 27 20 89 92 100

result in symbolic expressions that predominantly reflect
successful operations. This difference explains the observed lower
similarity scores when v1 is compared to v2 and v3.

When comparing Base64 v2 and v3 to v1 (see Table 4c, Rows 8
and 9, Column 7), we observe match rates of 97%, 89%, and 100%,
respectively. The difference is due to v2 and v3 lacking extensive
error-checking routines. Since all versions process 8-byte input,
if v2 completes symbolic execution first, it guides VADER along
v1’s success path, resulting in higher match rates. This highlights
how error-checking differences impact symbolic exploration and
similarity metrics.

Table 4c also shows a trend in Base decoding classes (e.g.,
Base16, Base32, Base64). All Base algorithms use lookup tables for
character translation, creating baseline similarities due to shared

Table 5: De-Manipulation Recipe Identification.

Web App Family Source # Algorithm TP FP FN

Blockchain pony [97] 5 String Parsing, Base16 5 0 0
Google Drive doina [98] 5 None 0 51 0
Pastebin kryptik [112] 5 Base64 5 0 0
Pastebin msil [112] 5 Base64 5 0 0
X razy [6] 5 String Parsing, Base64 5 0 0
None spora [60] 5 AES 4 0 1

Total 30 Acc. (83%) 24 5 1
1: FPs are caused by plaintext IP address format validation, which uses
String Parsing. However, this has a negligible impact on proactive
dead drop discovery.

structural elements. As a result, only six out of 144 comparisons
have a 0% match, far fewer than the expected 108 when comparing
unrelated Base classes. However, the noise in similarity scores for
cross-class comparisons is still lower than in same-class
comparisons. This ensures the observed similarities are not
enough to confidently determine functional equivalence between
unrelated Base algorithms.

Finally, our analysis demonstrates that VADER can identify
de-manipulating algorithms, even with different implementations.
For optimal performance in large-scale deployments, we select
algorithm implementations with match rates over 90% within their
class and under 25% across other classes (e.g., v1). This selection
minimizes false positives and improves VADER ’s reliability in
identifying de-manipulation recipes.

4.3 De-Manipulation Recipe Identification
Table 5 summarizes our evaluation of IO boundary isolation and
de-manipulation algorithm verification. In all cases, the IO
boundary aligned with the verified algorithm, with no instances of
multiple algorithms per boundary. Columns 1 and 2 provide details
on the web app and malware family. For validation, we expanded
our dataset to include spora, which includes cryptographic
routines. Column 4 lists the number of variants per malware
family, and Column 5 shows the de-manipulation recipes. The final
columns present accuracy metrics: TP, FP, and FN. Overall, VADER
identified recipes for 30 malware samples, achieving a 96% recall
rate and an F1 score of 89%.

We also found five FPs. For instance, doina requests a Google
Drive file with a plaintext IP, but VADER flagged it as String
Parsing due to format validation resembling parsing. Since the
content is plaintext, these FPs have minimal impact on proactive
dead drop discovery. VADER also struggles with unresolved
symbolic constraints, which limits constraint chaining for
source-to-sink mapping. Despite these issues, the low FP and FN
highlight VADER ’s accuracy in identifying de-manipulation
recipes.

5 Post-Deployment Findings
We deployed VADER on a 100k malware dataset built by randomly
downloadingWindows executables uploaded to VirusTotal between
2012 and 2022 [104]. Each malware sample triggered more than one
anti-virus (AV) engine, based on dataset parameters from Zhu et

1371

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Table 6: Distribution Of DDR Malware Found In Our Study.

Web App Domain # M1 Dead Drop Malware/Year
2012 - 2022

First
Seen

Last
Seen # F1 Backup

Dead Drop
Total

Recipes
Unique
Recipes

Pastebin pastebin.com 6,053 44 2014-02 2022-06 32 0 6,053 3

Blockchain

blockchain.info 776 7 2017-12 2019-11 59 111 776 1
blockcypher.com 573 23 2017-12 2019-11 41 415 573 1

bitaps.com 617 4 2017-11 2021-10 16 423 617 1
coinmarketcap.com 45 1 2017-12 2019-11 10 45 45 1

blockr.io 200 14 2017-12 2021-06 5 200 200 1

Blockchain Aggregate 2,200 372 2017-11 2021-06 812 1,194 2,200 1

X twitter.com 473 11 2017-10 2022-03 8 3 473 2

Google
docs.google.com 9 1 2018-02 2022-12 1 1 9 1

googleusercontent.com 137 115 2017-06 2020-06 8 0 137 1
drive.google.com 9 1 2018-02 2022-12 1 1 9 1

Dropbox dropbox.com 11 2 2017-06 2020-06 2 0 11 1

GitHub github.com 7 2 2017-11 2018-10 2 0 7 1

WordPress wordpress.com 4 1 2012-09 2014-08 1 0 4 1

Total 8,906 200 2012-09 2022-12 1102 1,199 8,906 72

1: M (Malware) and F (Families), 2: This is not the total column sum but the total unique categories.

al. [117], who studied VirusTotal labeling dynamics. Tranco [62]
ensured the malware connected to at least one web app.

We present the distribution of DDR malware in our study,
focusing on web apps used by DDR malware in Table 6. For
practical application in intrusion detection, we applied VADER ’s
analysis methods to real-world web app network traffic from
Netresec [83] (Table 7), cited in top-tier research [68, 52]. For
HTTPS traffic, we accessed the web app endpoint, decoded the
response with the recipe, and extracted IP/URL addresses, which
we scanned on VirusTotal [104] and URLhaus [1] to confirm
maliciousness. Finally, we provide two case studies to demonstrate
the prevalence and complexity of de-manipulation recipes in
malware and a practical approach to proactively discover dead
drops.

5.1 DDR-Enabling Web Apps
Table 6 shows the distribution of DDR malware. Column 1 lists
web apps, Column 2 their domains, and Column 3 the number of
malware samples (#M) using each app. Column 4 shows unique
dead drops, while Columns 5–7 provide a temporal snapshot over
11 years, using first- and last-seen dates from VirusTotal. Column
8 reports distinct malware families (#F), and Column 9 highlights
backup dead drop domains, used if the primary fails. Columns 10–11
list de-manipulation recipe counts and unique recipes discovered.

From Table 6, Pastebin accounts for about 68% of discovered
DDR malware (6,053). VADER found 44 unique dead drops (22% of
all) across 32 malware families. The caes of Pastebin DDR malware
that we identified span 2014-2022, with a major spike in 2021-2022,
accounting for nearly 5k discoveries. Historically, Pastebin has
hosted stolen content or malware [36]. This work is among the
first to expose its pervasiveness as a platform for hosting dead
drops. VADER identified one recipe per malware and four unique
recipes for Pastebin DDR malware (Columns 10–11). The low count

of unique recipes relative to malware volume shows VADER is
scalable for proactive detection.

Surprisingly, Blockchain web apps are the second most used for
dead drops, spread across five domains. The most common,
blockchain.info, hosts 776 malware samples retrieving Txn or
wallet IDs and de-manipulating them to C&C addresses. VADER
found 37 Blockchain dead drops (24 Txn IDs, 13 Wallet IDs) and
2,200 samples (17% of dead drops, 25% of malware). Column 9
shows 1,194 Blockchain samples with backups, e.g., blockr.io as
primary and blockchain.info as backup. Both support querying
Txn records using one recipe (Column 10). While Blockchain
records are immutable, dead drops can still be flagged when Txn
values match dead drop content.

VADER also found 11 X.com dead drops in 473 malware. We
classified dead drop origins as (1) hard-coded, like traditional DDR,
and (2) dynamically generated, similar to DGA malware. This
emerged in the sample fugrafa, which uses X.com to host encoded
C&C addresses. VADER found three backup X.com dead drops
during DDR logic localization. Further analysis showed that the
account name varies based on a function’s output, generating
accounts like np8j7ovqdl, q5euqysfu5, and qistp743li. Despite
this complexity, VADER, combined with DGA counteraction
techniques, can effectively mitigate such threats [5, 61].

VADER identified 117 Google dead drops, where data on Google
web apps is accessed via unique file IDs. By analyzing file URLs,
we traced the endusers for each file on Google Drive and Docs,
finding both were hosted by the same user. VADER also discovered
dead drops on Dropbox and GitHub, with 11 and seven malware
instances, respectively. One WordPress dead drop and its
de-manipulation recipe were included in our findings, along with
three more WordPress dead drops uncovered through proactive
discovery (see §2).

Row Total, Column 4 reveals spikes in DDR adoption from
2012–2022, showing a cycle of growth, delayed remediation, and

1372

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

resurgence. This trend, especially the recent rise, highlights the
need for proactive discovery to curb the reemergence of DDR
malware, particularly as new strains appear.

In total, VADER identified 8,906 samples and 2004, including
1,199 with backups. VADER also uncovered seven unique
de-manipulation recipes, demonstrating the scalability of our
approach. We are collaborating with web app providers on
remediation and have disrupted at least 6,674 DDR samples by
removing their dead drops.

5.2 VADER-Enabled Proactive Discovery
The rise of DDR malware underscores the need for proactive
measures to uncover hidden dead drops. Using de-manipulation
recipes from DDR malware samples, we applied them to the
Netresec [83] network traffic dataset, summarized in Table 7.
Column 1 lists the recipes used to decode web app responses. After
decoding, we cross-referenced the data with URLhaus [1] and
VirusTotal [104] to identify potential C&C addresses, recording
infected web apps and dead drops in Columns 2 and 3. Column 4
shows unique C&C addresses, while Column 5 provides the first
submission date (FSD) from URLhaus, correlating with the C&C
server discovery date. Column 6 reports active C&C addresses. To
determine C&C server liveness, domain-based addresses were
checked for website availability, and IP-based addresses were
verified using nmap to confirm open ports, following a less
intrusive method from prior research [37].

To evaluate VADER in real-world scenarios, we assessed false
positives (FPs) and false negatives (FNs), as shown in Columns 7
and 8. An FP occurs when a dead drop candidate is later found to
serve benign purposes. Since many web apps (e.g., OneDrive,
Dropbox, Discord) do not disclose user activity details (e.g., login
times, IP addresses), determining intent behind a dead drop is
difficult. Therefore, we rely on service providers for verification,
marking a dead drop as an FP if it remains active after notification.
This helps estimate the upper bound of FPs. FNs occur when a
dead drop was created before its C&C address was added to the
blocklist, reflecting VADER’s ability to detect dead drops quickly.
For platforms that do not disclose content creation times (e.g.,
OneDrive), these entries are marked N/A in Column 8.

From Table 6, VADER identified seven web apps hosting dead
drops. Recipe-enabled proactive discovery, shown in Column 2 of
Table 7, uncovered 11 web apps, a 57.1% increase. The use of
de-manipulation recipes identified 72 dead drops, averaging 6.5 per
web app (Column 3), highlighting the significant role of recipe
identification in uncovering threats. Notably, only two recipes
involved a single de-manipulation layer (Base64 and String
Parsing). With over 40% of dead drops using multiple layers,
brute-force approaches are infeasible, emphasizing VADER ’s
effectiveness.

Next, Column 𝐹𝑆𝐷 lists the submission dates of C&C addresses
behind dead drops, with the earliest from six years ago, showing the
persistence of DDR malware. Comparing Column 4 and Column 6,
over 64% of C&C addresses remain active, highlighting VADER ’s
significant contribution.

4Analyzing 100k malware samples revealed 273 dead drops (see Appendix D).

Table 7: Applying Recipes On Network Traffic Dataset To
Proactively Discover Dead Drops

.

Recipe Web Apps # Dead
Drops

Unique
C&C FSD

1
Online

2
FP3 FN4

Str Prs
+ Base64

Pastebin 1 1 2023-12-14 1 0 0
Retry.co 1 1 2024-02-08 1 0 0
GitHub 1 1 2023-12-22 1 0 0
Privatebin 1 1 2024-02-08 1 0 N/A
OneDrive 3 3 2023-11-14 1 0 N/A
Discord 2 2 2023-12-13 1 0 N/A
Dropbox 1 1 2023-11-17 1 0 0

Base64

Pastebin 10 9 2024-02-01 5 2 3
Kpaste 7 7 2018-11-27 4 0 N/A
GitHub 1 1 2024-01-31 0 0 0
Dropbox 2 2 2023-12-21 1 0 0
Discord 6 6 2019-05-17 5 0 N/A
OneDrive 3 3 2023-06-08 2 0 N/A

Base16
+ Chr Rot

Pastebin 1 1 2023-12-21 1 0 0
OneDrive 1 1 2023-10-23 1 0 N/A
Discord 2 2 2021-04-29 1 0 N/A

XOR
+ Chr Rot
+ Base16

Pastebin 1 1 2024-01-12 1 0 0
Justpaste.it 1 1 2023-12-12 1 0 1
Dropbox 2 2 2024-01-24 1 0 0
OneDrive 2 2 2023-11-15 1 0 N/A
Telegram 1 1 2023-12-15 1 0 1

XOR
+ Chr Rot

Codepad 2 2 2024-02-19 1 0 N/A
Retry.co 1 1 2024-02-13 0 0 1
Dropbox 2 2 2023-06-15 1 0 0
OneDrive 1 1 2024-01-25 0 0 N/A
Discord 2 2 2023-11-26 2 0 N/A

Str Prs
OneDrive 3 3 2023-11-27 2 1 N/A
Telegram 1 1 2024-01-29 1 0 1
Discord 3 3 2024-01-09 2 0 N/A
Pastebin 7 3 2022-10-13 2 1 1

Total 11 72 67 2018-11-27 43 4 8
1: First Submission Date on URLhaus [1]. 2: Number of live C&C servers.
3: A false positive (FP) is reported if a proactively identified dead drop
is not taken down by web app providers.

4: A false negative (FN) is reported if the creation time of the dead drop
is earlier than the time the C&C address is added to the blocklist.

In Column 7, VADER achieved a low FP rate of 5.56% among
the 72 identified dead drops. All FPs originated from single-layer
recipes, likely due to benign uses of encoded IPs and URLs. With
over 40% of dead drops using multiple techniques, VADER proves
effective in uncovering hidden threats. Additionally, eight FNs were
observed, reflecting the limitations in identifying dead drops on
their creation day, but these will be mitigated by blocklist updates.

Overall, VADER achieves a recall rate of about 90% and an F1
score of 92%, demonstrating its effectiveness in identifying and
mitigating DDR malware threats. Moreover, we have removed
94.4% of identified dead drops through collaboration with web app
providers.

5.3 Case Studies
Our first case study demonstrates the prevalence and complexity
of de-manipulation recipes. We also show that VADER effectively
detects C&C addresses on Pastebin, prevalent in our research.While
our access to Pastebin is limited, this highlights the advantages of
VADER, especially for web app providers with full platform access.

5.3.1 Prevalence and Complexity. To understand the prevalence
and complexity of identified recipes in malware, we analyze the
malware in this study. Table 8 shows de-manipulation recipes in
Column 1 with their prevalence over time in Column 2. Columns
3 and 4 count malware and families, while Columns 4 and 5 list
associated web apps and unique dead drops. Column 6 displays

1373

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

Table 8: De-Manipulation Recipes Identified.

De-manipulation
Recipes

Temporal
Changes #M #F Web App #A Content

Recipe Complexity
(# of basic blocks)

(2012-2022) Min Avg Max

Single Algorithm
Base64 964 8 Pastebin 8 Paste 26 34 43

Str Prs

1,788 4 Pastebin 6 Paste 13 19 27
9 1 Google Drive 1 File 4 4 4

137 8 Google User Cont. 115 File 3 7 10
9 1 Google Drive 1 File 4 4 4
11 2 Dropbox 2 File 5 7 8

Combination of 2 Algorithms

Str Prs + Base64 3,301 26 Pastebin 32 Paste 32 41 47
335 8 X 8 Post 37 37 37

XOR + Chr Rot 138 3 X 3 Post 6 8 11

Base16 + Chr Rot 4 1 WordPress 1 Blog post 17 17 17
Combination of 3 Algorithms

Base16 + Str Prs + Str->Int 362 13 Blockchain 24 Txn ID 42 47 53
1,838 68 14 Wallet ID 53 61 69

XOR + Chr Rot + Base16 7 2 Github 2 Repository 17 18 23

Total (≈ 1.5 algorithms/malware) 8,906 1101 2001 Avg. 20 23 27
1: This is not the total column sum but the total unique categories.

content types, and the final columns show algorithmic complexity
in basic blocks.

Among the nine decoders listed in Table 2, VADER identified
five, with XOR being the only cryptographic algorithm used by
DDR malware in our dataset. This aligns with observed trends [37,
94], where encryption is often avoided due to its complexity. In
contrast, decoding algorithms are platform-independent and
widely supported, allowing malware authors to reuse routines
across systems and environments.

From Column 3 (#M), we see that String Parsing (Str Prs) and
Base64 decoding is the most common de-manipulation recipe,
appearing in 3,301 DDR samples (≈ 37% of our dataset). Base64
offers obfuscation and preserves data during transport,
contributing to its popularity. For instance, the razy malware
strips five leading))))) from its dead drop content and
Base64-decodes the rest.

Base64 typically encodes binary data into ASCII for C&C URLs,
while Base16 encodes IPs in hex to obscure them. As shown in
Table 1, the mudrop malware uses Base16 decoding to extract its
C&C IP from dead drop content. Other examples include
Base16+Chr Rot (Row 5) and Base16+Str Prs+Str→Int (Row 6), the
latter being specific to blockchain web apps. However, since the
netresec dataset in §5.2 lacks blockchain connections, this
technique wasn’t detected.

The Recipe Complexity columns reflect how challenging it is to
generate de-manipulation recipes. Malware using three or more
algorithms may span over 69 basic blocks (Row 6). Even simpler
cases, like Str Prs, which extracts and parses dead drop content,
can reach up to 27 basic blocks. On average, each sample uses 1.5
de-manipulation algorithms per recipe. Despite this, VADER
effectively generates these recipes. We have shown how they
enable discovering dead drops from network traffic and will next
demonstrate their use in analyzing web app content.

5.3.2 Proactive Discovery Via Web App Scanning. Banload uses
Pastebin at http://pastebin.com/raw/jYzmPCEr as its dead

drop. VADER identified c2t5cGUubXlkZG5zLm1l and the Base64
de-manipulation recipe (Rows 1 and 2 in Table 9). Applying this
recipe, VADER decoded the C&C address skype.myddns.me and
can use this de-manipulation recipe to proactively discover
previously undisclosed dead drops.

With VADER, data is randomly extracted from Pastebin using
eight-character labels, de-manipulated via the recipe, and parsed
with regex for IPs or URLs. These addresses are checked against
URLhaus or VirusTotal for malicious activity, and associated
accounts are flagged for remediation. As noted in §2.3, web app
providers can scan platforms at scale for abuse, demonstrating
VADER’s potential for proactive dead drop discovery.

In Table 9, we present previously undisclosed dead drops and
C&C addresses. Column 1 lists the discovered Pastebin dead drops,
Column 2 shows the dead drop content, and Column 3 provides
the associated C&C addresses. Our proactive approach uncovered
13 previously unknown dead drops, with seven linked to the same

Table 9: VADER’s Banload Analysis.

VADER’s Banload Analysis Output
Web App Account http://pastebin.com/raw/jYzmPCEr

Dead Drop Content c2t5cGUubXlkZG5zLm1l

Recipe Base64 Decoding

C&C Address skype.myddns.me

Proactive Discovery: Pastebin
Dead Drop Content C&C Address
0hx614sm c2t5cGUubXlkZG5zLm1l skype.myddns.me
4yAyQVev d3d3LnRvcDE2OC5vcmc= www.top168.org
AHtqg5QQ c2t5cGUubXlkZG5zLm1l skype.myddns.me
FaZqCHMN c2t5cGUubXlkZG5zLm1l skype.myddns.me
grHusy2R c2t5cGUubXlkZG5zLm1l skype.myddns.me
L2QEYA3P d3d3LnRvcDE2OC5vcmc= www.top168.org
V7Cm4Vid c2t5cGUubXlkZG5zLm1l skype.myddns.me
Vr8Bequa c2t5cGUubXlkZG5zLm1l skype.myddns.me
XcHYKsYP c2t5cGUubXlkZG5zLm1l skype.myddns.me
WpU6vm5L cHJvZmFzc2lzdGFuY2UuY29t profassistance.com
xj8s4nF1 MTIxLjIyNi4yMzcuNQ== 121.226.237.5
EALLXQZw MTEwLjE4Mi43OC4xNg== 103.254.75.18
DdEhn3D7 ZnVlbHJlc2N1ZS5pZQ== fuelrescue.ie

1374

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

C&C address as banload. Of the six remaining C&C addresses, five
were unique. These results highlight that, even with limited data
extraction resources compared to web app providers, VADER
combined with internal tools can already enhance platform
security and deliver proactive outcomes.

6 Related Work
Malware-Driven Web Application Abuse. Existing research has

investigated web apps abused for botnet activities, primarily
focusing on end-user perspectives [8, 67, 86, 102, 3, 69, 116, 114,
27]. Recent efforts have aimed to examine the intricate relationship
between web apps and the malware that leverages them for
victimization [112]. While studies have targeted specific malware
families [29, 97, 91, 93, 30, 98] and the blockchain abuse [40, 41, 89,
45, 113], their findings largely propose reactive countermeasures.
Before VADER, proactively discovering dead drops remained
largely unaddressed.

Data Manipulation Identification. Prior research has focused on
binary code extraction and function identification using dynamic
or symbolic analysis [14, 53, 95, 79, 108, 26, 70, 18, 88, 106, 65, 72,
63, 28]. These methods are limited by code coverage or reliance on
available network endpoints. In contrast, VADER ’s concolic
analysis improves malware exploration even with dead endpoints.
ByteWeight [9] uses deep neural networks to identify
de-manipulation algorithms but needs a large training dataset.
VADER, however, uses symbolic expression matching to identify
de-manipulation algorithms regardless of implementation.

Leveraging Concolic Analysis. Concolic analysis has been widely
used by the research community in bug identification [15, 21, 17],
test case generation [51, 13, 23], dynamic analysis [87, 50, 80, 110,
2], and taint analysis [92, 48, 84, 24]. However, since these related
works are largely geared towards vulnerability analysis, they are
not easily extensible to help web app providers mitigate DDR
practices. In contrast, VADER is among the first proposals to help
web app providers confirm DDR capability from malware samples
and extract de-manipulation recipes. This capability enables web
app providers to proactively identify dead drops.

C&C Address Identification. Existing techniques detect C&C
addresses by analyzing malicious network traffic [42, 11, 111, 105,
47, 100], but these typically focus on identifying C&C addresses for
individual malware samples. In contrast, VADER identifies
multiple dead drops from a single malware sample, which may
conceal different C&C addresses. While tools like Cyberprobe [81]
and ExecScent [82] probe remote endpoints to detect C&C
addresses, they are ineffective against DDR malware that hides
C&C addresses behind dead drops. Instead, VADER can uncover
previously undisclosed dead drops, enabling web app providers to
address abuse and counteract botnets.

7 Discussion
Brute-Forcing Efforts. Web app providers can take content from

their platform to use as input to a DDR malware sample and
observe possible C&C connections. Instead, VADER enables
providers to analyze malware once, extract its de-manipulation
recipe, and apply it at scale to identify dead drops efficiently.

While brute-forcing known de-manipulation algorithms may
appear straightforward, multi-layered de-manipulation and the
infinite parameter space required by some algorithms render this
approach infeasible. VADER overcomes these challenges by using
symbolic constraints to automatically recover de-manipulation
logic, regardless of layers or parameters.

Evasion Techniques. While malware authors often use evasion
techniques like probing the execution environment to avoid
analysis, VADER addresses many of these strategies by hooking
system APIs (see §3.1). Although comprehensive evasion
mitigation is out of scope of this paper, VADER models commonly
observed evasive APIs identified by industry and academic
experts [7, 55, 71, 38]. For example, when GetLocaleInfo is
invoked to detect the bot’s location, VADER injects symbolic
return values to trick the DDR malware sample into continued
execution. This enables effective analysis even in the presence of
evasive behavior. Our implementation, evaluated on a malware
sample set collected between 2012 and 2022, achieves 92% accuracy
in localizing the DDR logic. Thanks to the extensible design of
VADER’s, web app providers can add support for emerging evasion
techniques. A full list of modeled evasive APIs is available in
Appendix A.

Advanced Packers and Obfuscators. Although advanced packers
and obfuscators were not observed in our dataset, advanced
packers (e.g., VMProtect) or obfuscators (e.g., O-LLVM) can be
deployed, complicating DDR malware detection and recipe
extraction for web app providers. These challenges are not unique
to VADER, but reflect broader issues in symbolic analysis, where
handling such techniques often requires added human effort.
Several approaches have been proposed [12, 109, 16, 115] to
recover the semantics of obfuscated code. As VADER does not rely
on any special functionality in S2E, web app providers can readily
extend it to support advanced packers and obfuscators in future
DDR malware.

Generalizability. Expanding VADER is straightforward; new
de-manipulation algorithms can be added by integrating their
source code. Although our dataset lacks fully customized
de-manipulation algorithms, such extensions are feasible. In these
cases, the recipes generated by VADER would model the
algorithms through character operations. We recognize the
potential challenges fully customized algorithms may pose to S2E.
However, as discussed earlier, VADER’s methodology is
tool-agnostic, ensuring compatibility with more advanced concolic
analysis frameworks.

8 Conclusion
This paper presents VADER, a framework for proactively
uncovering and neutralizing dead drops used by DDR malware by
dynamically resolving C&C addresses on popular web apps.
Analyzing 100k malware samples, VADER identified DDR malware
from 110 families and 273 dead drops across seven web apps. Using
de-manipulation recipes from DDR malware samples, VADER
improved dead drop identification by 57.1% in network traffic.
Case studies revealed that over 40% of samples use advanced
de-manipulation techniques. VADER removed 94.4% of identified

1375

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

dead drops, disrupting 6,674 DDR malware samples. This work
shows the potential for web app providers to adopt VADER for
early detection and proactive dead drop remediation.

Acknowledgment
We thank the anonymous reviewers for their constructive
comments and feedback. We also thank our collaborators at
Netskope for their support, insights, and suggestions throughout
this research. This material was supported in part by the Office of
Naval Research (ONR) under grants N00014-19-1-2179 and
N00014-23-1-2073; the National Science Foundation (NSF) under
grant 2143689; and the Defense Advanced Research Projects
Agency (DARPA) under contract N66001-21-C-4024. Any opinions,
findings, and conclusions in this paper are those of the authors and
do not necessarily reflect the views of our sponsors, collaborators,
the United States Military Academy, the Department of the Army,
or the Department of Defense.

References
[1] Abuse.ch. 2023. URLHaus. (2023). Retrieved March 12, 2023 from https://

urlhaus.abuse.ch/.
[2] Omar Alrawi, Moses Ike, Matthew Pruett, Ranjita Pai Kasturi,

Srimanta Barua, Taleb Hirani, Brennan Hill, and Brendan Saltaformaggio.
2021. Forecasting Malware Capabilities From Cyber Attack Memory Images.
In Proc. 30th USENIX Security. (Aug. 2021).

[3] Sumayah Alrwais, Kan Yuan, Eihal Alowaisheq, Zhou Li, and XiaoFeng Wang.
2014. Understanding the dark side of domain parking. In Proc. 23rd USENIX
Security. (Aug. 2014).

[4] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and
David Dagon. 2011. Detecting Malware Domains at the Upper DNS Hierarchy.
In Proc. 20th USENIX Security. (Aug. 2011).

[5] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed
Abu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-away Traffic to
Bots: Detecting the Rise of DGA-based Malware. In Proc. 21st USENIX Security.
(Aug. 2012).

[6] Pieter Arntz. 2017. Analyzing malware by API calls. (Oct. 2017). Retrieved
March 06, 2024 from https://blog.malwarebytes.com/threat-analysis/2017/10
/analyzing-malware-by-api-calls/.

[7] MITRE | ATT&CK. 2021. Attack Matrix for Enterprise. (Nov. 2021). Retrieved
November 06, 2021 from https://attack.mitre.org/.

[8] Hammi Badis, Guillaume Doyen, and Rida Khatoun. 2014. Understanding
Botclouds From a System Perspective: A Principal Component Analysis. In
Proc. IEEE/IFIP Network Operations andManagement Symposium (NOMS). IEEE,
(May 2014).

[9] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and
David Brumley. 2014. BYTEWEIGHT: Learning to Recognize Functions in
Binary Code. In Proc. 23rd USENIX Security. (Aug. 2014).

[10] Lenart Bermejo and Joelson Soares. 2018. Lazarus Targets Latin American
Financial Companies. (Nov. 2018). Retrieved November 15, 2024 from https:
//www.trendmicro.com/en_us/research/18/k/lazarus- continues-heists-
mounts-attacks-on-financial-organizations-in-latin-america.html.

[11] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and
Christopher Kruegel. 2012. Disclosure: detecting botnet command and
control servers through large-scale netflow analysis. In Proc. 28th Annual
Computer Security Applications Conference (ACSAC).

[12] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz.
2017. Syntia: synthesizing the semantics of obfuscated code. In Proc. 26th
USENIX Security. (Aug. 2017).

[13] Robert S Boyer, Bernard Elspas, and Karl N Levitt. 1975. SELECT — A Formal
System for Testing and Debugging Programs by Symbolic Execution. In ACM.

[14] Juan Caballero, Noah M Johnson, Stephen McCamant, Dawn Song, and
UC Berkeley. 2010. Binary Code Extraction and Interface Identification for
Security Applications. In Proc. 17th NDSS. (Feb. 2010).

[15] Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases:
How to Make Systems Code Crash Itself. In Proc. International SPIN Workshop
on Model Checking of Software. Springer. (Aug. 2005).

[16] Joan Calvet, José M. Fernandez, and Jean-Yves Marion. 2012. Aligot:
cryptographic function identification in obfuscated binary programs. In Proc.
19th ACM CCS. (Oct. 2012).

[17] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
2012. Unleashing Mayhem on Binary Code. In Proc. 33rd IEEE Security and
Privacy. (May 2012).

[18] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu,
Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. Bingo: Cross-Architecture
Cross-OS Binary Search. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. (Nov. 2016).

[19] Joseph C Chen, Kenney Lu, Jaromir Horejsi, and Gloria Chen. 2021. Biopass
RAT: New Malware Sniffs Victims via Live Streaming. (July 2021). Retrieved
November 06, 2024 from https://www.trendmicro.com/en_us/research/21
/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html.

[20] Anton Cherepanov. 2017. Analysis of TeleBots’ cunning backdoor. (July 2017).
Retrieved November 15, 2022 from https://www.welivesecurity.com/2017/07
/04/analysis-of-telebots-cunning-backdoor/.

[21] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. 2009.
Selective Symbolic Execution. In Proc. 5th Workshop on Hot Topics in System
Dependability (HotDep). (June 2009).

[22] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-vivo Multi-path Analysis of Software Systems. ACM SigPlan
Notices.

[23] Lori A. Clarke. 1976. A System to Generate Test Data and Symbolically Execute
Programs. IEEE Transactions on Software Engineering, 3, 215–222.

[24] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic
Dynamic Taint Analysis Framework. In Proc. International Symposium on
Software Testing and Analysis (ISSTA). (July 2007).

[25] CYFIRMA. 2022. Cyber Research on the Malicious Use of Discord. (Sept. 2022).
Retrieved March 12, 2024 from https://www.cyfirma.com/research/cyber-
research-on-the-malicious-use-of-discord.

[26] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of
Binaries, (June 2016).

[27] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder,
Brendan Saltaformaggio, and Wenke Lee. 2021. Towards measuring supply
chain attacks on package managers for interpreted languages. In Proc. 2021
NDSS. (Feb. 2021).

[28] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014.
Blanket execution: dynamic similarity testing for program binaries and
components. In Proc. 23rd USENIX Security. (Aug. 2014).

[29] ESET. 2019. Operation Ghost. The Dukes aren’t back — they never left. (Oct.
2019). Retrieved February 26, 2022 from https://www.welivesecurity.com/wp-
content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf.

[30] FireEye. 2019. APT17: Hiding in Plain Sight - FireEye and Microsoft Expose
Obfuscation Tactic. (Feb. 2019). Retrieved Feburary 21, 2021 from https://
www.fireeye.com/current-threats/apt-groups/rpt-apt17.html.

[31] FireEye. 2019. Double Dragon - APT41, a Dual Espionage and Cyber Crime
Operation. (Aug. 2019). Retrieved March 06, 2022 from https://content.fireeye.
com/apt-41/rpt-apt41.

[32] FireEye. 2016. Multigrain - Point of Sale Attackers Make an Unhealthy
Addition to the Pantry. (Apr. 2016). Retrieved November 6, 2021 from https:
//www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html.

[33] FIRST. 2015. FIRST is the global Forum of Incident Response and Security
Teams. (Oct. 2015). Retrieved December 31, 2024 from https://www.first.org.

[34] Fraunhofer FKIE. 2021. Malpedia: Free and Open Malware Reverse
Engineering Resource offered by Fraunhofer FKIE. (Nov. 2021). Retrieved
November 6, 2021 from https://malpedia.caad.fkie.fraunhofer.de.

[35] Forcepoint. 2022. Monsoon – Analysis of an APT Campaign. (Mar. 2022).
Retrieved March 6, 2022 from https://www.forcepoint.com/sites/default/files/
resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf.

[36] Fortinet. 2019. The Malicious Use of Pastebin. (2019). Retrieved March 12,
2022 from https://www.fortinet.com/blog/threat-research/malicious-use-of-
pastebin.

[37] Jonathan Fuller, Ranjita Pai Kasturi, Amit Sikder, Haichuan Xu, Berat Arik,
Vivek Verma, Ehsan Asdar, and Brendan Saltaformaggio. 2021. C3PO:
Large-Scale Study of Covert Monitoring of C&C Servers via
Over-Permissioned Protocol Infiltration. In Proc. 28th ACM CCS. (Nov. 2021).

[38] Nicola Galloro, Mario Polino, Michele Carminati, Andrea Continella, and
Stefano Zanero. 2022. A Systematical and Longitudinal Study of Evasive
Behaviors in Windows Malware. COSE.

[39] Ibrahim Ghafir, Vaclav Prenosil, Mohammad Hammoudeh, Thar Baker, Sohail
Jabbar, Shehzad Khalid, and Sardar F. Jaf. 2018. Botdet: a system for real time
botnet command and control traffic detection. IEEE Access, 6, 38947–38958.

[40] Mar Gimenez-Aguilar, Jose Maria de Fuentes, and Lorena Gonzalez-Manzano.
2023. Malicious uses of Blockchains by Malware: From the Analysis to
Smart-Zephyrus. International Journal of Information Security, 1–36.

[41] Gibran Gomez, Pedro Moreno-Sanchez, and Juan Caballero. 2022. Watch
Your Back: Identifying Cybercrime Financial Relationships in Bitcoin through
Back-and-Forth Exploration. In Proc. 29th ACM CCS. (Nov. 2022), 1291–1305.

1376

https://urlhaus.abuse.ch/
https://urlhaus.abuse.ch/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://attack.mitre.org/
https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.cyfirma.com/research/cyber-research-on-the-malicious-use-of-discord
https://www.cyfirma.com/research/cyber-research-on-the-malicious-use-of-discord
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://www.fireeye.com/current-threats/apt-groups/rpt-apt17.html
https://www.fireeye.com/current-threats/apt-groups/rpt-apt17.html
https://content.fireeye.com/apt-41/rpt-apt41
https://content.fireeye.com/apt-41/rpt-apt41
https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html
https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html
https://www.first.org
https://malpedia.caad.fkie.fraunhofer.de
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://www.fortinet.com/blog/threat-research/malicious-use-of-pastebin
https://www.fortinet.com/blog/threat-research/malicious-use-of-pastebin

CCS ’25, October 13–17, 2025, Taipei, Taiwan. Jonathan Fuller et al.

[42] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2007. Bothunter: detecting malware infection through ids-driven dialog
correlation. In Proc. 16th USENIX Security. (Aug. 2007).

[43] Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. Botsniffer: detecting botnet
command and control channels in network traffic. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2008, San Diego,
California, USA, 10th February - 13th February 2008. (Feb. 2008).

[44] Zuzana Hromcová and Anton Cherepanov. 2020. Invisimole: The Hidden
Part of the Story Unearthing Invisimole’s Espionage Toolset and Strategic
Cooperations. (June 2020). Retrieved November 15, 2024 from https://www.
welivesecurity.com/wp-content/uploads/2020/06/ESET_InvisiMole.pdf.

[45] Zhangrong Huang, Ji Huang, and Tianning Zang. 2020. Leopard:
Understanding the Threat of Blockchain Domain Name Based Malware. In
Proceddings of the 21st International Conference Of Passive and Active
Measurement (PAM). (Mar. 2020).

[46] The Intercept. 2024. The Feds Are Coming For "Extremist" Gamers. (Mar.
2024). Retrieved June 9, 2024 from https://theintercept.com/2024/03/09/fbi-
dhs-gamers-extremism-violence/.

[47] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz. 2011.
Jackstraws: Picking Command and Control Connections from Bot Traffic. In
Proc. 20th USENIX Security. (Aug. 2011).

[48] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. Dta++: Dynamic Taint Analysis With Targeted Control-Flow
Propagation. In Proc. 18th NDSS. (Feb. 2011).

[49] Doowon Kim, Bum Jun Kwon, Kristián Kozák, Christopher Gates, and Tudor
Dumitras, . 2018. The Broken Shield: Measuring Revocation Effectiveness in
the Windows Code-Signing PKI. In Proc. 27th USENIX Security. (Aug. 2018).

[50] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng,
Xiangyu Zhang, and Dongyan Xu. 2017. J-force: Forced Execution on
Javascript. In Proc. 26th International World Wide Web Conference (WWW).
(Apr. 2017).

[51] James C King. 1976. Symbolic Execution and Program Testing. In number 7.
Vol. 19. ACM, 385–394.

[52] Stephan Kleber and Frank Kargl. 2011. Poster: network message field type
recognition. In Proc. 26th ACM CCS. (Nov. 2011).

[53] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin Kirda.
2010. Inspector Gadget: Automated Extraction of Proprietary Gadgets from
Malware Binaries. In Proc. 31th IEEE Security and Privacy. (May 2010).

[54] Platon Kotzias, Leyla Bilge, and Juan Caballero. 2016. Measuring PUP
Prevalence and PUP Distribution through Pay-Per-Install Services. In Proc.
25th USENIX Security. (Aug. 2016).

[55] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and Davide
Balzarotti. 2021. Does Every Second Count? Time-Based Evolution of Malware
Behavior in Sandboxes. In Proc. 2021 NDSS. (Feb. 2021).

[56] CyFI Lab. 2025. Baseline Comparison For De-Manipulation Algorithm C/C++
Source Code Via Moss. (Apr. 2025). Retrieved April 09, 2025 from https :
//github.com/CyFI-Lab-Public/VADER/blob/main/appendix/moss.pdf.

[57] CyFI Lab. 2025. Baseline Comparison For Decoding Algorithm Similarity
Via Symbolic Expressions. (Apr. 2025). Retrieved April 09, 2025 from https:
//github.com/CyFI- Lab- Public/VADER/blob/main/appendix/baseline_
comparison.pdf.

[58] CyFI Lab. 2025. Defensive Evasion APIs. (Apr. 2025). Retrieved April 09, 2025
from https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/
defensive_evasion_apis.pdf.

[59] CyFI Lab. 2025. Identified Dead Drops. (Apr. 2025). Retrieved April 09, 2025
from https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/
identified_accounts.pdf.

[60] Malwarebytes Labs. 2017. Explained: Spora ransomware. (Mar. 2017).
Retrieved November 15, 2022 from
https://www.malwarebytes.com/blog/news/2017/03/spora-ransomware.

[61] Victor Le Pochat, Sourena Maroofi, Tom Van Goethem, Davy Preuveneers,
Andrzej Duda, Wouter Joosen, Maciej Korczyński, et al. 2020. A Practical
Approach for Taking Down Avalanche Botnets Under Real-World Constraints.
In Proc. 2020 NDSS. (Feb. 2020).

[62] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej
Korczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proc. 2019 NDSS. (Feb. 2019).

[63] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. 2015.
Automated Identification of Cryptographic Primitives in Binary Code with
Data Flow Graph Isomorphism. In Proc. 10th ACM Symposium on Information,
Computer and Communications Security (ASIACCS). (Apr. 2015).

[64] Chaz Lever, Platon Kotzias, Davide Balzarotti, Juan Caballero, and
Manos Antonakakis. 2017. A Lustrum of Malware Network Communication:
Evolution and Insights. In Proc. 38th IEEE Security and Privacy. (May 2017).

[65] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu Gu. 2018.
K-Hunt: Pinpointing Insecure Cryptographic Keys from Execution Traces. In
Proc. 25th ACM CCS. (Oct. 2018).

[66] Xiaojing Liao, Sumayah A. Alrwais, Kan Yuan, Luyi Xing, XiaoFeng Wang,
Shuang Hao, and Raheem A. Beyah. 2016. Lurking malice in the cloud:
understanding and detecting cloud repository as a malicious service. In Proc.
23rd ACM CCS. (Oct. 2016).

[67] Greeshma Lingam, Rashmi Ranjan Rout, Durvasula V. L. N. Somayajulu, and
Sajal K. Das. 2020. Social Botnet Community Detection: A Novel Approach
based on Behavioral Similarity in Twitter Network using Deep Learning. In
Proc. 15th ACM Symposium on Information, Computer and Communications
Security (ASIACCS). (Oct. 2020).

[68] Zhiheng Liu, Zhen Zhang, Yinzhi Cao, Zhaohan Xi, Shihao Jing, andHumberto
La Roche. 2018. Towards a secure zero-rating framework with three parties.
In Proc. 27th USENIX Security. (Aug. 2018).

[69] Wei Lu, Mark Miller, and Ling Xue. 2017. Detecting Command and Control
Channel of Botnets in Cloud. In Proceedings of the 1st International
Conference on Intelligent, Secure, and Dependable Systems in Distributed and
Cloud Environments (ISDDC).

[70] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
PSemantics-Based Obfuscation-Resilient Binary Code Similarity Comparison
With Applications to Software Plagiarism Detection. In Proc. 22nd ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE). (Nov.
2014).

[71] Lorenzo Maffia, Dario Nisi, Platon Kotzias, Giovanni Lagorio, Simone Aonzo,
and Davide Balzarotti. 2021. Longitudinal Study of the Prevalence of Malware
Evasive Techniques. arXiv preprint arXiv:2112.11289.

[72] Carlo Meijer, Veelasha Moonsamy, and Jos Wetzels. 2021. Where’s Crypto?:
Automated Identification and Classification of Proprietary Cryptographic
Primitives in Binary Code. In Proc. 30th USENIX Security. (Aug. 2021).

[73] Joseph Menn. 2020. Court orders seizure of ransomware botnet controls as
U.S. election nears. (Sept. 2020). Retrieved July 18, 2022 from https://www.
reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of -
ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2.

[74] Xianghang Mi, Xuan Feng, Xiaojing Liao, Baojun Liu, XiaoFeng Wang, Feng
Qian, Zhou Li, Sumayah Alrwais, Limin Sun, and Ying Liu. 2019. Resident
Evil: Understanding Residential IP Proxy as a Dark Service. In Proc. 40th IEEE
Security and Privacy. (May 2019).

[75] Trend Micro. 2021. Malware Campaign Targets South Korean Banks. (Nov.
2021). Retrieved November 6, 2021 from https : / / blog . trendmicro . com /
trendlabs-security-intelligence/malware-campaign-targets-south-korean-
banks-uses-pinterest-as-cc-channel/.

[76] Trend Micro. 2022. Operation Endtrade: Tick’s Multi-Stage Backdoors for
Attacking Industries and Stealing Classified Data. (Nov. 2022). Retrieved
November 15, 2022 from
https://documents.trendmicro.com/assets/pdf /Operation- ENDTRADE-
TICK-s-Multi- Stage-Backdoors- for-Attacking- Industries- and-Stealing-
Classified-Data.pdf.

[77] Trend Micro. 2024. Trend Micro Collaborated with Interpol in Cracking Down
Grandoreiro Banking Trojan. (July 2024). Retrieved July 13, 2024 from https:
//www.trendmicro.com/en_fi/research/24/d/trend-micro- collaborated-
with-interpol-in-cracking-down-grandore.html.

[78] Trend Micro. 2022. Understanding the Patchwork Cyberespionage Group.
(Mar. 2022). Retrieved March 6, 2022 from https://documents.trendmicro.com/
assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf.

[79] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. [n. d.] BinSim:
Trace-based Semantic Binary Diffing via System Call Sliced Segment
Equivalence Checking. In.

[80] Abbas Naderi-Afooshteh, Yonghwi Kwon, Anh Nguyen-Tuong,
Ali Razmjoo-Qalaei, Mohammad-Reza Zamiri-Gourabi, and Jack W Davidson.
2011. MalMax: Multi-Aspect Execution for Automated Dynamic Web Server
Malware Analysis. In Proc. 26th ACM CCS. (Nov. 2011).

[81] Antonio Nappa, ZhaoyanXu,MZubair Rafique, Juan Caballero, andGuofei Gu.
2014. Cyberprobe: towards internet-scale active detection of malicious servers.
In Proc. 2014 NDSS. (Feb. 2014).

[82] Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. 2012. ExecScent:
mining for new C&C domains in live networks with adaptive control
protocol templates. In Proc. 21st USENIX Security. (Aug. 2012).

[83] Netresec. 2023. Publicly Available PCAP Files. (2023). Retrieved March 12,
2023 from https://www.netresec.com/?page=PcapFiles.

[84] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature Generation of Exploits on
Commodity Software. In Proc. 12th NDSS. (Feb. 2005).

[85] Carly Page. 2022. Rsocks, A popular proxy service, was just seized by the DOJ.
(June 2022). Retrieved July 18, 2022 from https://techcrunch.com/2022/06/17
/rsocks-proxy-seized-justice-department/.

[86] Nick Pantic and Mohammad Iftekhar Husain. 2015. Covert Botnet Command
and Control Using Twitter. In Proc. 31st Annual Computer Security Applications
Conference (ACSAC). (Dec. 2015).

1377

https://www.welivesecurity.com/wp-content/uploads/2020/06/ESET_InvisiMole.pdf
https://www.welivesecurity.com/wp-content/uploads/2020/06/ESET_InvisiMole.pdf
https://theintercept.com/2024/03/09/fbi-dhs-gamers-extremism-violence/
https://theintercept.com/2024/03/09/fbi-dhs-gamers-extremism-violence/
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/moss.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/moss.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/baseline_comparison.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/baseline_comparison.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/baseline_comparison.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/defensive_evasion_apis.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/defensive_evasion_apis.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/identified_accounts.pdf
https://github.com/CyFI-Lab-Public/VADER/blob/main/appendix/identified_accounts.pdf
https://www.malwarebytes.com/blog/news/2017/03/spora-ransomware
https://www.reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of-ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2
https://www.reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of-ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2
https://www.reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of-ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://documents.trendmicro.com/assets/pdf/Operation-ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-Industries-and-Stealing-Classified-Data.pdf
https://documents.trendmicro.com/assets/pdf/Operation-ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-Industries-and-Stealing-Classified-Data.pdf
https://documents.trendmicro.com/assets/pdf/Operation-ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-Industries-and-Stealing-Classified-Data.pdf
https://www.trendmicro.com/en_fi/research/24/d/trend-micro-collaborated-with-interpol-in-cracking-down-grandore.html
https://www.trendmicro.com/en_fi/research/24/d/trend-micro-collaborated-with-interpol-in-cracking-down-grandore.html
https://www.trendmicro.com/en_fi/research/24/d/trend-micro-collaborated-with-interpol-in-cracking-down-grandore.html
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://www.netresec.com/?page=PcapFiles
https://techcrunch.com/2022/06/17/rsocks-proxy-seized-justice-department/
https://techcrunch.com/2022/06/17/rsocks-proxy-seized-justice-department/

Enhanced Web Application Security Through Proactive Dead Drop Resolver Remediation CCS ’25, October 13–17, 2025, Taipei, Taiwan.

[87] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and
Zhendong Su. 2014. X-force: Force-executing Binary Programs for Security
Applications. In Proc. 23rd USENIX Security. (Aug. 2014).

[88] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and
Thorsten Holz. 2015. Cross-Architecture Bug Search in Binary Executables.
In Proc. 36th IEEE Security and Privacy. (May 2015).

[89] Stijn Pletinckx, Cyril Trap, and Christian Doerr. 2018. Malware Coordination
Using the Blockchain: An Analysis of the Cerber Ransomware. In Proceedings
of the 6th IEEE Conference on Communications and Network security (CNS).
(May 2018).

[90] Checkpoint Research. 2019. Pony’s C&C Servers Hidden Inside the Bitcoin
Blockchain. (Dec. 2019). Retrieved March 6, 2022 from https : / / research .
checkpoint . com / 2019 / ponys - cc - servers - hidden - inside - the - bitcoin -
blockchain/.

[91] ESETResearch. 2019. Casbaneiro: Dangerous Cookingwith a Secret Ingredient.
(Oct. 2019). Retrieved March 06, 2024 from https://www.welivesecurity.com/2
019/10/03/casbaneiro-trojan-dangerous-cooking/.

[92] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic
Execution (But Might Have Been Afraid to Ask). In Proc. 31th IEEE Security
and Privacy. (May 2010), 317–331.

[93] Securelist. 2022. The Dropping Elephant - Aggressive Cyber-Espionage in the
Asian Region. (Mar. 2022). Retrieved March 6, 2022 from https://securelist.
com/the-dropping-elephant-actor/75328/.

[94] David Shamah. 2014. How malware writers’ laziness is helping one startup
predict attacks before they even happen. (Oct. 2014). Retrieved March 16, 2024
from https://www.zdnet.com/article/how-malware-writers- laziness- is-
helping-one-startup-predict-attacks-before-they-even-happen/.

[95] Paria Shirani, Lingyu Wang, and Mourad Debbabi. 2017. Binshape: Scalable
and Robust Binary Library Function Identification using Function Shape. In
Proceedings of the 14th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). (July 2017).

[96] Standford.Edu. 2022. A System for Detecting Software Similarity. (Nov. 2022).
Retrieved Feburary 26, 2024 from https://theory.stanford.edu/~aiken/moss/.

[97] Tsuyoshi Taniguchi, Harm Griffioen, and Christian Doerr. 2021. Analysis
and Takeover of the Bitcoin-Coordinated Pony Malware. In Proc. 16th ACM
Symposium on Information, Computer and Communications Security (ASIACCS).
(June 2021).

[98] ASERT Team. 2018. Donot Team Leverages New Framework. (Mar. 2018).
Retrieved March 09, 2023 from https://www.netscout.com/blog/asert/donot-
team-leverages-new-modular-malware-framework-south-asia.

[99] Counter Threat Unit Research Team. 2017. Bronze Butler Targets Japanese
Enterprises. (Oct. 2017). Retrieved March 06, 2024 from https://www.securew
orks.com/research/bronze-butler-targets-japanese-businesses.

[100] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. 2012.
Botfinder: finding bots in network traffic without deep packet inspection.
In Proceedings of the 8th international conference on Emerging networking
experiments and technologies. (Oct. 2012).

[101] Nikola Todorovic and Abhi Chaudhuri. 2023. Using AI to help organizations
detect and report child sexual abuse material online. (2023). Retrieved March
12, 2023 from https://blog.google/around-the-globe/google-europe/using-ai-
help-organizations-detect-and-report-child-sexual-abuse-material-online/.

[102] Milad Torkashvan and Hassan Haghighi. 2015. CB2C: A Cloud-Based Botnet
Command and Control. Indian Journal of Science and Technology.

[103] Vitor Ventura. 2019. Gustuff Banking Botnet Targets Australia. (Apr. 2019).
Retrieved March 06, 2024 from https://blog.talosintelligence.com/2019/04
/gustuff-targets-australia.html.

[104] VirusTotal. 2004. VirusTotal. (June 2004). Retrieved January 05, 2024 from
https://www.virustotal.com/.

[105] Ryan Vogt, John Aycock, and Michael J Jacobson Jr. 2007. Army of botnets. In
Proc. 14th NDSS. (Feb. 2007).

[106] Shuai Wang and Dinghao Wu. 2017. In-memory Fuzzing for Binary Code
Similarity Analysis. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). (Oct. 2017).

[107] WordPress. 2024. WordPress.com: Build a Site, Sell Your Stuff, Start a Blog &
More. (2024). Retrieved December 13, 2024 from https://wordpress.com/.

[108] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic Function
Detection in Obfuscated Binaries via Bit-Precise Symbolic Loop Mapping. In
Proc. 38th IEEE Security and Privacy. (May 2017).

[109] Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic function
detection in obfuscated binaries via bit-precise symbolic loop mapping. In
Proc. 38th IEEE Security and Privacy. (May 2017).

[110] Haichuan Xu, Mingxuan Yao, Runze Zhang, Mohamed Moustafa Dawoud,
Jeman Park, and Brendan Saltaformaggio. 2024. Dva: extracting victims and
abuse vectors from android accessibility malware. In Proc. 33rd USENIX
Security. (Aug. 2024).

[111] Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang Yang,
Juan Caballero, and Guofei Gu. 2014. Autoprobe: Towards Automatic Active

Malicious Server Probing Using Dynamic Binary Analysis. In Proc. 21st ACM
CCS. (Nov. 2014).

[112] Mingxuan Yao, Jonathan Fuller, Rajita Pai Sridhar, Saumya Agarwal, Amit K.
Sikder, and Brendan Saltaformaggio. 2023. Hiding in Plain Sight: An Empirical
Study of Web Application Abuse in Malware. In Proc. 32nd USENIX Security.
(Aug. 2023).

[113] Mingxuan Yao, Runze Zhang, Haichuan Xu, Ryan Chou, Varun Chowdhary
Paturi, Amit Kumar Sikder, and Brendan Saltaformaggio. 2024. Pulling Off
The Mask: Forensic Analysis of the Deceptive Creator Wallets Behind Smart
Contract Fraud. In Proc. 45th IEEE Security and Privacy. (May 2024).

[114] Runze Zhang, Ranjita Pai Sridhar, Mingxuan Yao, Zheng Yang,
David Oygenblik, Haichuan Xu, Vacha Dave, Cormac Herley, Paul England,
and Brendan Saltaformaggio. 2025. Identifying incoherent search sessions:
search click fraud remediation under real-world constraints. In Proc. 46th
IEEE Security and Privacy. (May 2025).

[115] Runze Zhang, Mingxuan Yao, Haichuan Xu, Omar Alrawi, Jeman Park, and
Brendan Saltaformaggio. 2025. Hitchhiking vaccine: enhancing botnet
remediation with remote code deployment reuse. In Proceedings of the
Network and Distributed System Security (NDSS) Symposium.

[116] Shuang Zhao, Patrick PC Lee, John CS Lui, Xiaohong Guan, Xiaobo Ma,
and Jing Tao. 2012. Cloud-Based Push-Styled Mobile Botnets: A Case Study
of Exploiting the Cloud to Device Messaging Service. In Proc. 28th Annual
Computer Security Applications Conference (ACSAC).

[117] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song,
and GangWang. 2020. Measuring and Modeling the Label Dynamics of Online
Anti-Malware Engines. In Proc. 29th USENIX Security. (Aug. 2020).

A Anti-Analysis APIs
Malware uses anti-analysis and defensive evasion APIs to avoid
detection. VADER hooks these APIs to facilitate malware
exploration. The APIs used in VADER’s design are listed in
VADER’s code repository [58]. These APIs were identified through
manual malware analysis, industry reports [7, 34], and prior
research on system emulation and evasion techniques [55, 71, 38].

B De-manipulation Algorithm Source Code
Similarity

We use Moss [96] to confirm that each decoding algorithm in
VADER is distinct. The comparison results are available in
VADER’s code repository [56]. As shown in Row 6, no algorithms
overlap, where |𝑅 | is the set of all de-manipulation algorithms, and
𝑚, 𝑛 index different algorithms. Matches occurred only when an
algorithm was compared with itself. This confirms that each
de-manipulation algorithm in VADER is uniquely implemented.

C De-Manipulation Comparison Graphs
We made the symbolic expression of de-manipulation algorithm
comparisons available in VADER’s code repository [57]. For
example, Column 1, Row 1 shows comparisons for three Base16
versions, totaling nine comparisons (e.g., Base16v1 vs. Base16v2,
etc.). Each graph covers a two-hour runtime (X-axis), with lines
representing de-manipulation similarity (Y-axis). A black vertical
line marks the latest plateau, with all comparisons plateauing for
over 30 minutes. Plateaus occurred between 20 and 85 minutes. We
selected the best algorithm from each class for VADER to identify
malware de-manipulation algorithms.

D Web App Accounts Identified In Our Study
The dead drops identified by VADER in this research have been
made publicly available in VADER’s code repository [59].

1378

https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://www.welivesecurity.com/2019/10/03/casbaneiro-trojan-dangerous-cooking/
https://www.welivesecurity.com/2019/10/03/casbaneiro-trojan-dangerous-cooking/
https://securelist.com/the-dropping-elephant-actor/75328/
https://securelist.com/the-dropping-elephant-actor/75328/
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/
https://theory.stanford.edu/~aiken/moss/
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://blog.google/around-the-globe/google-europe/using-ai-help-organizations-detect-and-report-child-sexual-abuse-material-online/
https://blog.google/around-the-globe/google-europe/using-ai-help-organizations-detect-and-report-child-sexual-abuse-material-online/
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://www.virustotal.com/
https://wordpress.com/

	Abstract
	1 Introduction
	2 Overview
	2.1 Running Example - The Mudrop Malware
	2.2 Proactive Dead Drop Discovery
	2.3 VADER in Practice

	3 Methodology
	3.1 DDR Logic Localization
	3.2 De-Manipulation IO Boundary Isolation
	3.3 De-Manipulation Recipe Identification

	4 Pre-Deployment Evaluation
	4.1 DDR Logic Localization
	4.2 Validating Symbolic Expression Matching
	4.3 De-Manipulation Recipe Identification

	5 Post-Deployment Findings
	5.1 DDR-Enabling Web Apps
	5.2 VADER-Enabled Proactive Discovery
	5.3 Case Studies

	6 Related Work
	7 Discussion
	8 Conclusion
	A Anti-Analysis APIs
	B De-manipulation Algorithm Source Code Similarity
	C De-Manipulation Comparison Graphs
	D Web App Accounts Identified In Our Study

