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ABSTRACT
Current techniques to monitor botnets towards disruption or take-
down are likely to result in inaccurate data gathered about the
botnet or be detected by C&C orchestrators. Seeking a covert and
scalable solution, we look to an evolving pattern inmodernmalware
that integrates standardized over-permissioned protocols, exposing
privileged access to C&C servers. We implement techniques to
detect and exploit these protocols from over-permissioned bots
toward covert C&C server monitoring. Our empirical study of 200k
malware captured since 2006 revealed 62,202 over-permissioned
bots (nearly 1 in 3) and 443,905 C&C monitoring capabilities, with
a steady increase of over-permissioned protocol use over the last
15 years. Due to their ubiquity, we conclude that even though
over-permissioned protocols allow for C&C server infiltration, the
efficiency and ease of use they provide continue to make them
prevalent in themalware operational landscape. This paper presents
C3PO, a pipeline that enables our study and empowers incident
responders to automatically identify over-permissioned protocols,
infiltration vectors to spoof bot-to-C&C communication, and C&C
monitoring capabilities that guide covert monitoring post infiltra-
tion. Our findings suggest the over-permissioned protocol weak-
ness provides a scalable approach to covertly monitor C&C servers,
which is a fundamental enabler of botnet disruptions and take-
downs.
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1 INTRODUCTION
Botnet disruptions and takedowns are driven by Command and
Control (C&C) server monitoring before any action is taken and
after to gauge success. This means that disruption or takedown
attempts are not only provably necessary, but must be targeted
and effective [1]–[9]. Modern approaches can be categorized as
passive or active monitoring. Passive monitoring (e.g., sensor node
injection) is coarse-grained and may not give accurate insights into
the botnet [10], [11], i.e., the number and location of the victims
and the extent of damages incurred. It also requires a full reverse
engineering effort to maintain sensor nodes making this approach
not widely used [11]. Therefore, active monitoring is the preferred
approach [1], [10], generally providing better insights into botnet
operations. However, active monitoring techniques, including re-
mote penetration testing [12]–[16] and domain seizure [1], [3]–[6],
[17], are noisy making them easily detectable. Seeking a better so-
lution, this research proposes that standard protocols, which are
increasingly used by botnets, can be leveraged for general and covert
C&C server monitoring.

In previous botnet disruption and takedown attempts, authori-
ties first monitored the C&C server to prove malware as the catalyst
for incurred damages before legal permission was granted for coun-
teraction [18]. Yet, accurate monitoring goes beyond determining
the legality of counteraction. For example, to protect the 2020 elec-
tion, Microsoft took down 120 of 128 Trickbot C&C servers [19].
Accurately identifying C&C servers pre-takedown (profiling), then
tracking successes post takedown (validation), required an in-depth
understanding of the peers in the botnet, C&C server locations, and
weaknesses to leverage for botnet disruption. Therefore, successful
monitoring must result in accurate, legally-admissible information
gathered during profiling and remain covert to avoid discovery by
C&C orchestrators, prompting defensive evasion or hardening [11],
[20], [21]. An ideal solution should provide authorities with a means
to access the C&C server under the guise of normal bot operation.

As the end-host agents of a C&C orchestrator, bots are entrusted
with C&C server access. In fact, attackers are entirely dependent
on the information exfiltrated by bots to gain situational aware-
ness in a victim’s network. To enable command and control, bots
use standard protocols for file transfer, data storage, and message-
based communication. However, many standard protocols are over-
permissioned, meaning that they provide feature-rich and unfet-
tered access to the server beyond the subset of features implemented
by a given client. A similar trend has been observed in benign soft-
ware where over-permissioned client-side protocols lead to unau-
thorized server access [22]–[25]. This prompted our key insight:
over-permissioned protocols combined with the trust C&C servers
place in their bots expose a scalable opportunity for covert monitoring
of C&C servers through protocol infiltration.
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To explore this insight, a systematic study is needed to iden-
tify the evolution of over-permissioned protocol use in malware.
Moreover, to conduct such a study, the analysis must be scalable,
reproducible, and provide the requisite information to covertly mon-
itor C&C servers through over-permissioned protocol infiltration.
The study must expose over-permissioned protocols, how they are
being used, and the associated levels of access and recoverable data
on the C&C server. Finally, an automated pipeline must be made
available to enable the authorities to take action on these common
malware weaknesses in future botnet outbreaks.

We turned our attention to how the authorities could recover
C&C server access privileges from over-permissioned bots (bots
using over-permissioned protocols) allowing them to spoof bot-to-
C&C communication. To this end, we designed and implemented
C3PO1, an automated memory-image-based symbolic analysis mea-
surement pipeline. C3PO analyzes a malware memory image to
identify (1) over-permissioned protocols, (2) infiltration vectors (i.e.,
authentication information to spoof bot-to-C&C communication),
and (3) C&C monitoring capabilities (i.e., capabilities in the end-
host bot that reveal the C&C server’s composition and content to
guide covert monitoring post infiltration).

Through our collaboration with Netskope, the leading Secure
Access Service Edge (SASE) provider, which provides cloud secu-
rity and networking to more than 30% of the Fortune 100, we used
C3PO to study the evolution of over-permissioned protocol use
in 200k malware spanning back 15 years. C3PO uncovered 62,202
over-permissioned bots (≈1 in 3). Our empirical measurement re-
vealed several interesting findings: FTP is the most prevalent over-
permissioned protocol found in over 79% of all over-permissioned
bots. C3PO also identified 443,905 C&C monitoring capabilities (an
average of 7 per bot), enabling victim profiling, evidence collection
from spyware, and even client-side code reflection. This trend has
only increased since 2006, with over 8,000 over-permissioned bots
appearing per year in 2018 and 2019. Furthermore, recent bots (since
2015) implemented as many as 3 over-permissioned protocols.

Finally, we present two case studies to demonstrate covert C&C
server monitoring through protocol infiltration. We were careful
to follow ethical guidelines and adhere to applicable laws when
conducting this study. Covert monitoring succeeded and revealed
the number of files, their contents, and validation of information
inferred by the C&C monitoring capabilities, which will support
future botnet disruption and takedown attempts. We are working
with Netskope towards the disclosure and remediation of the iden-
tified C&C servers. Lastly, we have made C3PO available to the
community at: https://cyfi.ece.gatech.edu/.

2 A MOTIVATING EXAMPLE
Botnet disruptions and takedowns rely on accurate C&C server
monitoring to profile the botnet beforehand and validate successes
after. Consider Sanny, an APT that targets government agencies
through spearfishing. After infection, Sanny hijacks Windows ser-
vice components to enable persistence, deletes dropped files to cover
their tracks, and conducts sensitive data exfiltration. The Sanny
botnet survived takedown attempts in 2013 [26] and persists today.
After botnet monitoring began to fail, an extensive investigation
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Figure 1: C3PO-enabled Covert Monitoring of Sanny.

was conducted in 2018, revealing Sanny’s C&C server update [27],
but this required a tedious manual analysis.

The authorities reverse engineered dropped malicious files to
investigate the new Sanny variant. At the time, authorities found
never-before-seen FTPAPIs and authentication credentials through-
out the malware binary and configuration files on the infected sys-
tem, revealing the update to the Sanny C&C server. However, since
no further action was taken, they likely did not realize the leverage
this provided for covert C&C server infiltration. If they did, the
authorities could have also identified the malware capabilities that
rely on FTP for interaction with the C&C server. This would have
allowed them to reinstate monitoring of the botnet’s spread by
extracting victim profiles and new bot command updates, all under
the covert guise of a trusted FTP connect.

Armed with our key insight, C3PO monitors the C&C server
by first identifying over-permissioned protocols, FTP in this case,
through their invocation points in the malware. Figure 1 illus-
trates the sequence of events toward covert C&C server moni-
toring. During malware analysis 1 , C3PO identified FTP APIs (e.g.,
FTPPutFile) in Sanny which confirmed the updated Sanny C&C
server (Table 1, Row 1). C3PO then used Iterative Selective Sym-
bolic Execution (iSSE) to extract infiltration vectors (IVs) from FTP
APIs 2 , allowing C3PO to spoof bot-to-C&C communication for
infiltration while masquerading as a trusted bot (Table 1, Row 2).

Had authorities realized the leverage FTP provided for botnet
infiltration, they could have monitored victim profiles and new bot
command updates. C3PO automatically provides this by identifying
C&C monitoring capabilities 3 revealing the C&C’s composition
and content that authorities can expect post infiltration. C3PO only
targets those capabilities that are exploitable, i.e., they interact with
the C&C server in a way that can be observed by C3PO when it
connects to the C&C server using the same protocol. For example,
Sanny performs victim profiling by exfiltrating victim locale infor-
mation, files, and passwords (from Firefox and Microsoft Outlook)
via FTP and used code reflection to execute arbitrary commands
on the victim system from a file on the C&C server (Table 1, Row
3). C3PO maps these capabilities to specific files and directories to
monitor on the C&C server via FTP protocol infiltration.

Table 1: C3PO’s Analysis of the Sanny Malware[27].

Protocol FTP

Infiltration
Vectors

Username: cnix_21072852
Password: vlasimir2017
Server: ftp.capnix.com

C&C Monitoring
Capabilities

Victim Profiling, File Exfiltration,
Password Stealing, and Code Reflection

Covert
Monitoring

Outputs

(1)Peer disclosure as victim information is listed as
"<Victim ID>_(#report) | UserName | TimeStamp"
(2) Code Reflection to update the C&C host name
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Figure 2: C3PO Measurement Pipeline.

After C3PO extracts the IVs 2 and capabilities 3 , it actively
monitors the C&C server. C3PO can use the IVs (Table 1, Row 2)
to infiltrate 4 the Sanny C&C server, via the trusted bot-to-C&C
channel, and directly locate data from victims 5 in the form of
files containing infected system information and passwords result-
ing in peer disclosure (Table 1, Row 4) which serves as evidence
of computer fraud and abuse. Furthermore, C3PO identified code
reflection where the bot orchestrators issue the chip command
to the bot to trigger the FTP hostname to update. The ability to
monitor this transaction ensures that we maintain persistent covert
monitoring irrespective of migrating servers.

In contrast to previous works, C3PO gives the ability to identify,
assess, and pursue counteraction via scalable covert monitoring.
Notably, C3PO does not attempt to find exploitable vulnerabilities
in protocol implementations but instead, leverages the inherent
capabilities of the protocol.

3 MEASUREMENT PIPELINE
In collaboration with Netskope, we designed C3PO to study the
adoption of over-permissioned protocols in bots and how their use
has evolved from April 2006 to June 2020. Our dataset included 200k
malware with collection dates spanning back 15 years. This allows
us to retroactively deploy C3PO by analyzing each malware sample
and give C3PO the vantage point to observe existing trends in the
progression of malware development. C3PO identified 62,202 of
these as over-permissioned bots totaling 65,739 over-permissioned
protocol uses detected across 8,512 malware families. Furthermore,
C3PO identified that each bot contains on average 7 C&C moni-
toring capabilities, totaling 443,905 capabilities identified across
our dataset. We hope C3PO provides an automated measurement
pipeline to study the over-permissioned bot landscape in the wild
and this opportunity for covert botnet monitoring.

Figure 2 shows the four phases of C3PO’s automated measure-
ment pipeline that employs a memory-image-based symbolic anal-
ysis. Taking a malware binary as input, C3PO conducts Dynamic
Memory Image Extraction (subsection 3.1) by executing the malware
under instrumentation and capturing memory images during this
execution for analysis. This provides the best vantage point to by-
pass malware packing and obfuscation. C3PO transitions to static
analysis for Over-Permissioned Bot Identification (subsection 3.2)
by identifying invocation points for protocol APIs and protocol
keywords/commands (tokens). Next, C3PO uses Iterative Selective
Symbolic Execution (iSSE) for Infiltration Vector Identification to
allow the authorities to spoof bot-to-C&C communication for in-
filtration (subsection 3.3). C3PO then conducts C&C Monitoring
Capabilities Identification to reveal the composition and content

that authorities can expect from the C&C server during infiltra-
tion (subsection 3.4). Finally, infiltration vectors can be used for
Covert Monitoring of the C&C servers to pinpoint data inferred by
C&C monitoring capabilities enabling botnet monitoring.

3.1 Dynamic Memory Image Extraction
Malware often employs sophisticated packing and obfuscation tech-
niques that constrain analysis and also inhibit large-scale measure-
ments [28], [29]. Although there are numerous unpacking tools
available, modern packing techniques employ robust anti-analysis
methods rendering existing solutions mute [28]. While sandboxes
or software emulation are viable approaches, they require careful
configuration per malware sample/family which is likely to prevent
scaling to analyze a large dataset and may accidentally result in
introduced errors through incomplete configurations. As a pipeline
designed for large-scale measurement, C3PO aims to provide a scal-
able means of malware analysis through dynamic unpacking and
memory image extraction, i.e., taking a snapshot of the malware
during normal execution. Ideally, creating a memory image during
dynamic execution allows the malware to unpack and deobfuscate
itself, leaving C3PO with unpacked and deobfuscated code and
execution data to analyze.

Inspired by prior works [28], [30], C3PO extracts multiple mem-
ory images during the malware execution by hooking Internet and
Network (I/N) APIs2. This technique is based on two observations:
(1) Irrespective of the packing scheme, after unpacking, the mal-
ware must invoke I/N APIs to interact with its C&C server. (2) Since
recent research has shown that most modern packers have at least
two layers of packing [28], if malware memory image extraction is
untimely, or at the wrong layer, it will still be packed. Therefore,
C3PO extracts multiple memory images by hooking all I/N APIs, as
their DLLs are loaded, using a trampoline to replace instructions
in the hooked API with a call to our custom code that writes the
memory image to a file and returns to the trampoline. Each memory
image contains the execution context (i.e., register values, stack,
program counter, etc., at the time of memory image extraction)
which ensures that malware analysis begins from a valid execution
point in the malware.

After extracting malware memory images, C3PO proceeds to
the memory-image-based analysis to measure the prevalence of
over-permissioned protocol use and the leverage they provide to
covertly monitor C&C servers.

2I/N APIs allow the malware to interact with FTP and HTTP protocols to access
Internet resources.
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3.2 Over-Permissioned Bot Identification
Over-Permissioned bots use over-permissioned protocols that au-
thorities can leverage to covertly monitor C&C servers. We con-
struct a protocol database that C3PO can reference as it confirms
the invocation of protocol identifiers (APIs and protocol keywords
or commands, i.e., tokens) validating protocol use. If the bot is over-
permissioned, C3PO outputs the protocol APIs, tokens, and call
sites for later analysis.

3.2.1 Protocol Implementations. Protocols are implemented us-
ing low-level functions or high-level, built-in library functions to
achieve the same overall functionality. We, therefore, categorize
protocol implementations as low-level (𝐿𝐿) or high-level (𝐻𝐿) for
our measurement study.
HL Implementations. Protocol-specific APIs are used for 𝐻𝐿 pro-
tocol implementations (e.g., SQLConnect), which reduce flexibility
in modifying or adding to the protocol but make communications
easy and efficient given the built-in APIs.
LL Implementations.Malware authors often hide the use of well-
known protocols and prevent an investigator’s immediate under-
standing of the C&C communication routines. 𝐿𝐿 implementations
use raw-socket (non protocol specific) APIs (e.g., send) in conjunc-
tion with official protocol tokens (e.g., NICK for the IRC protocol).

Notably, all protocols have 𝐿𝐿 implementations, but only some
also have a 𝐻𝐿 implementation. Although custom protocol imple-
mentations are feasible, their uniqueness supports signature devel-
opment making them easier to filter with firewall rules. Thus, C3PO
identifies𝐻𝐿 and 𝐿𝐿 implementations, and could be easily extended
to other protocols when deemed necessary for an investigation.

3.2.2 Protocol Database. Standard protocols are often used for:
(1) file transfer, (2) data storage, and (3) message-based communi-
cation. However, their ubiquitous integration into benign software
has prompted research into inherent vulnerabilities which has led
to unauthorized server access [22]–[25]. Noticing a similar trend in
malware, we select common over-permissioned protocols discov-
ered in preliminary research, reports from industry experts [31],
[32], and related work [33] for our study, as shown in Table 2.

Based on the protocols, we constructed a database of all proto-
col identifiers for C3PO to reference during protocol identification
(subsubsection 3.2.3). To construct this database, we developed a
web-crawler and targeted it to the respective protocol documenta-
tion [34]–[38] or manually extracted protocol details to populate
the database. However, as other over-permissioned protocols be-
come widely adopted by malware, they can be easily integrated
by adding their identifiers to the protocol database. Based on the
protocol implementations and the database as a reference, C3PO
conducts protocol identification to pinpoint protocol use.

3.2.3 Protocol Identification. To establish the execution context
for malware analysis, C3PO parses the memory images and extracts
code pages enabling import address and export directory tables
(IAT and EDT) reconstruction. For each memory image, C3PO iden-
tifies the code regions to construct a CFG starting at the point the
memory image was taken to all reachable code. This results in one
CFG per memory image, rooted at the instruction pointer from the
memory image. C3PO then creates a Combined CFG (C2FG) by

Table 2: Over-Permissioned Protocols

Category Over-Permissioned Protocol Implementation(s)

File Transfer
File Transfer Protocol (FTP/TFTP) 𝐿𝐿 , 𝐻𝐿

Web Distributed Authoring & Versioning (WebDAV) 𝐿𝐿 , 𝐻𝐿

BitTorrent/Micro Transport Protocol (𝜇TP) 𝐿𝐿 , 𝐻𝐿

Data Storage

Mongo Database 𝐿𝐿 , 𝐻𝐿

MySQL 𝐿𝐿 , 𝐻𝐿

PostgreSQL 𝐿𝐿 , 𝐻𝐿

Object DB Connectivity (ODBC) 𝐿𝐿 , 𝐻𝐿

Message-based
Communication

Internet Relay Chat (IRC) 𝐿𝑙𝐿

Message Queuing Telemetry Transport (MQTT) 𝐿𝐿 𝐻𝐿

matching overlapping blocks in all CFGs, ensuring no duplication.
It then traverses this C2FG to identify all function call sites and
compares it against the reconstructed IAT and EDT for a matching
API. Although a common challenge in static analysis is resolving
indirect function calls, the initial dynamic execution to generate
memory images populates concrete function pointers in memory
before image extraction, which aids in indirect call resolution. A
data dependence graph, built from the C2FG, also resolves addi-
tional indirect calls.
HL Identification. To identify 𝐻𝐿 implementations, C3PO tra-
verses the C2FG and resolves call targets. If it encounters an API that
is in the protocol database, C3PO stores the call site and the called
API. From our example in section 2, C3PO detected FTPPutFile
in Sanny, classifying it as a over-permissioned bot because it uses
FTP.
LL Identification. 𝐿𝐿 implementations use raw-socket APIs with
a protocol token. When C3PO traverses the C2FG and encounters
a call to a raw-socket API, it extracts API arguments to deduce
tokens (as described in subsection 3.3). If the token is in the pro-
tocol database, C3PO stores the call site and the called API/token
combination.

C3PO identified 62,202 over-permissioned bots (≈30%) in 200k
malware. After protocol identification, C3PO continues the analy-
sis to identify information that can be used to spoof bot-to-C&C
communication toward infiltration.

3.3 Infiltration Vector (IV) Identification
Infiltration vectors (IVs) are the credentials used by the bot to
connect to the C&C server. To spoof bot-to-C&C communication,
C3PO identifies IVs using a combination of backward slicing and
iterative selective symbolic execution.
Backward Slicing. C3PO uses the previously identified APIs,
call sites, and tokens to first locate the authentication APIs (e.g.,
SQLConnect for 𝐻𝐿 or send and a protocol token for 𝐿𝐿). C3PO
performs backward slicing (of the C2FG) from these API arguments
to identify a path to them through the malware. A challenge faced
during backward slicing is that API arguments only point to the first
byte of the data buffer (e.g., lpszPassword for InternetConnect)
resulting in an incomplete slice. To address this, C3PO generates
target instructions by identifying all instructions that were last to
write to all bytes of the data buffer.
Iterative Selective Symbolic Execution (iSSE). C3PO symboli-
cally executes along each of the backward slices to the authentica-
tion API. Since C3PO is constrained by the slice, symbolic execution
is selective precluding path explosion while maintaining accuracy.
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Target Identification Backward Slicing iSSE

…
b u f[0]        b u f[1]        b u f[2]        b u f[3]                          b u f[n -1]

push ebp

mov ebp, esp
push ecx

cmp hfile, 0
push esi

jnz 0x40bd43

xor esi, esi
jmp 0x40bd71

...
mov esi, [ebp+20h]
lea ecx, [ebp+20h]
push 0
push eax

call 0x4030e7
push eax

push esi
push hfile 

call HttpSendRequest

mov ecx, [ebp+20h]

call 0x4049ba
mov eas, esi

pop esi
leave 

retn 4

Backward Slice Target Instructions Infiltration Vectors in the Slice

Figure 3: C3PO’s Infiltration Vector Identification of Sanny.

When iSSE reaches the authentication API, it halts to extract API
arguments by dereferencing data buffer pointers. If the arguments
are concrete, they are decoded to strings and iSSE analysis ends,
as the IVs have been found. If they are symbolic, it means the API
arguments were passed as parameters from the preceding (call-
ing) function. C3PO, guided by the path, incrementally expands
the exploration region by starting in the preceding function be-
fore re-initiating iSSE. This iterative process continues until the
IVs are found. We discuss instances where concretization is not
possible in section 8. Although execution can begin at the entry
point, C3PO is more likely to encounter symbolic loops which can
cause resource exhaustion if specific functions in the malware are
computationally complex. Therefore, C3PO starts small (within the
function), then incrementally expands to increase the likelihood of
argument extraction. Loop handling is still necessary and C3PO em-
ploys a loop limiter to exit symbolic loops. However, loop avoidance
is still preferred.

Figure 3 illustrates C3PO’s IV Identification steps for the Sanny
malware. C3PO performs backward slicing from the authentica-
tion API InternetConnect. For each of the authentication API
arguments (e.g., lpszServerName, nServerPort, lpszUserName,
lpszPassword, etc.), C3PO calculates the memory addresses for all
bytes of the data buffer using a shadow memory that was populated
during data dependency graph generation, a prerequisite for back-
ward slicing. C3PO finds each instruction that was the last to write
to each byte of the data buffer (Target Identification in Figure 3).
Using these target instructions, C3PO conducts a backward slice to
identify all influencing operations of the data buffer (the blue line
through four of Sanny’s functions in Figure 3). C3PO now traverses
each slice using iSSE (iSSE in Figure 3) to extract IVs for all argu-
ments. For Sanny, C3PO extracted the server hostname, username,
and password (e.g., Table 1, Row 2) after covering only 3 of the 4
functions in the backward slice (the red iSSE line in Figure 3). Thus,
C3PO can spoof bot-to-C&C communication and masquerade as a
trusted bot.

3.4 C&C Monitoring Capabilities
Bots execute capabilities on the infected systems, some of which
can be leveraged to provide covert monitoring. These C&C moni-
toring capabilities either (1) exfiltrate victim data or (2) allow bot
orchestrators to execute arbitrary commands. These capabilities are
valuable because the former alerts the authorities about the types
and format of data stored on the C&C server, and the latter triggers
commands on peer systems for botnet disruption upon infiltration.

To identify these capabilities, C3PO constructs a backward slice
from all data exfiltration and code reflection targets in the mal-
ware. It then performs API-to-capability mapping to derive the C&C
monitoring capabilities.
Backward Slicing. C3PO uses the previously identified APIs and
call sites to locate data exfiltration (e.g., HttpSendRequest) and
code reflection (e.g., ShellExecute) APIs. With each of these APIs
as data sinks, C3PO performs backward slicing. For data exfiltration
APIs, it backward slices from theAPI argument corresponding to the
data exfiltration buffer (e.g., lpOptional for HttpSendRequest).
For code reflection APIs, it backward slices from the operation ar-
guments that reveal the C&C command triggers (e.g., lpOPeration
for ShellExecute).
API-to-Capability Mapping. C3PO locates all API calls along
each of the backward slices, similar to the technique used in sub-
subsection 3.2.3. This gives C3PO API sequences that influence
the contents of the data exfiltration buffer or operation argument.
These sequences of APIs are then compared against the capability
models to identify the C&C monitoring capabilities. The capabil-
ity models are derived by manually reverse engineering known
malware and by using the insights from industry reports [32], [39].
In our study, we considered 6 categories of 16 C&C monitoring
capabilities, as shown in Table 3.

To illustrate, C3PO identifies the victim profiling capability in
the Sanny malware (section 2). C3PO performs backward slicing
from the data sink HttpSendRequest. It calculates the memory
addresses for all bytes of the sink buffer by referencing the shadow
memory that was populated during data dependency graph genera-
tion (subsection 3.3). C3PO then finds each instruction that was the
last to write to each byte of the buffer. Using these target instruc-
tions, C3PO conducts a backward slice to identify all influencing
operations of the sink buffer. It identifies GetUserDefaultLCID and
GetLocaleInfoW APIs leading up to HttpSendRequest API. This
API sequence conforms with the capability model for Victim Locale
Information, and hence the Sanny malware is classified as having a
Victim Profiling Capability.

Note that this capability can be used for covert monitoring be-
cause it describes the type of data and format stored on the C&C
server which results in immediate victim identification. It also re-
veals the scope of infection and potential damages incurred (victim

Table 3: C&C Monitoring Capabilities

Category C&C Monitoring Capabilities

Browser
Password Stealing (1)

Mozilla Stealer
Chrome Stealer
Internet Explorer Stealer

Service
Password Stealing (2)

WiFi Stealer
Kerberos Stealer
Windows System Stealer

Victim
Profiling (3)

Registry-stored System Details
Live System Operating State
System OS Details
Victim Locale Information

Spying, Live
Monitoring (4)

Keylogger
Screen Capture
Audio Capture

File
Exfiltration (5) High-level ProtocolsRaw Socket Transfer

Code
Reflection (6) Code Reflection
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credentials provide access to sensitive accounts) providing legally
admissible evidence to confirm computer fraud and abuse.

To identify code reflection, the same process holds. However, in-
stead of identifying all APIs along the backward slice, C3PO locates
the closest API to the sink that reads incoming information (e.g.,
recv). Once found, C3PO extracts the argument from the buffer to
reveal the C&C command that triggered code reflection. This allows
the authorities with C&C access to issue the commands to peers
in the botnet to trigger arbitrary code execution. This capability
goes beyond C&C server monitoring, and instead supports botnet
disruption and takedown.

4 VALIDATING OUR TECHNIQUES
C3PO is implemented in C++ and Python, totaling 11k lines of
code leveraging Detours [40] for memory image extraction and
angr [41] to support binary analysis with specific applications to
protocol identification, backward slicing, and iSSE. We also used
the recently released AVClass2 [42], the current state-of-the-art in
malware labeling tools, whose predecessor, AVClass [43], has long
been relied upon in top-tier research [44]–[47].

Before deploying C3PO on the full data set, we validate its accu-
racy in identifying protocols and leverageable malware capabilities
which enable covert and targeted C&C server monitoring. We leave
the efficacy of infiltration vector analysis for our case studies (sec-
tion 6) which demonstrate our ability to covertly infiltrate C&C
servers. We evaluated C3PO using a ground truth dataset of 35
manually reverse engineered Windows malware from 13 different
families, covering all protocols in Table 2.

4.1 Protocol Identification Evaluation
Table 4 presents C3PO’s protocol identification evaluation. Columns
1-2 list themalware families (categorized by protocols found in each)
and the number of malware variants (𝑉𝑎𝑟 ). Columns Low-level and
High-level Identifiers present the ground truth (GT) findings, C3PO’s
analysis results of protocol identifiers found, and the true positive
(TP), false positive (FP), and false negative (FN) metrics for each,
respectively. C3PO correctly (TP) identified 290 (121 𝐿𝐿 +169 𝐻𝐿)
protocol identifiers. Our GT analysis confirmed 304 (135 𝐿𝐿 + 169
𝐻𝐿) of them, revealing 13 FPs, 14 FNs, and an overall accuracy of
over 94%.

We then dug into the detection of protocols among all variants.
As an example, we identified 4 of the 13 malware families use
FTP employing both 𝐿𝐿 and 𝐻𝐿 identifiers. C3PO’s analysis of the
Softcnapp, Ragebot, Blackhole, and Rbot malware reported no FTP
FPs and FNs.

Upon close inspection, we found that FPs occur when C3PO
incorrectly identifies the use of a token (protocol command or key-
word). C3PO reported 2 extra IRC tokens in Ragebot due to custom
C&C commands which also used the PASS keyword (also an IRC
command). Similarly, C3PO reported FPs in 𝐿𝐿 implementations of
MongoDB (2 false tokens), IRC (5 false tokens), and BitTorrent/uTP
(6 false tokens) due to tokens appearing as substrings in other C&C
communication. Although adding missed tokens to the protocol
database reduces FNs, this is a case-by-case basis. Also, there is a
tradeoff between FPs and FNs - allowing and ignoring substrings

Table 4: Validating Protocol Identification.𝑉𝑎𝑟 represents malware vari-
ants. GT represents the ground truth compared with C3PO’s results to
identify the TP, FP, and FN metrics.

Malware
(by protocols) 𝑉𝑎𝑟

Low-level Identifiers High-level Identifiers

GT C3PO TP FP FN GT C3PO TP FP FN

FTP/TFTP
Softcnapp 5 0 0 0 0 0 15 15 15 0 0
Ragebot 2 2 2 2 0 0 0 0 0 0 0
Blackhole 3 3 3 3 0 0 0 0 0 0 0
Rbot 2 2 2 2 0 0 0 0 0 0 0
Subtotal 12 7 7 7 0 0 15 15 15 0 0

WebDAV
Equationdrug 2 54 42 42 0 12 0 0 0 0 0
Subtotal 3 54 42 42 0 12 0 0 0 0 0

BitTorrent/𝜇TP
Sathurbot 2 18 24 18 6 0 0 0 0 0 0
Icloader 1 0 0 0 0 0 21 21 21 0 0
Subtotal 3 18 24 18 6 0 21 21 21 0 0

MySQL
Delf 4 0 0 0 0 0 24 24 24 0 0
Subtotal 4 0 0 0 0 0 24 24 24 0 0

MongoDB
Cstealer 1 2 4 2 2 0 5 5 5 0 0
Subtotal 1 2 4 2 2 0 5 5 5 0 0

ODBC
Zbot 4 0 0 0 0 0 60 60 60 0 0
Subtotal 4 0 0 0 0 0 60 60 60 0 0
PostgreSQL
Alma 2 0 0 0 0 0 5 5 5 0 0
Subtotal 2 0 0 0 0 0 5 5 5 0 0

IRC
Softcnapp 5 15 15 15 0 0 0 0 0 0 0
Ragebot 1 6 8 6 2 0 0 0 0 0 0
Rbot 2 9 7 7 0 2 0 0 0 0 0
Slackbot 4 12 12 12 0 0 0 0 0 0 0
Delf 4 12 15 12 3 0 0 0 0 0 0
Subtotal 16 54 57 52 5 2 0 0 0 0 0

MQTT
Expiro 3 0 0 0 0 0 39 39 39 0 0
Subtotal 3 0 0 0 0 0 39 39 39 0 0

Total 35 135 134 121 13 14 169 169 169 0 0

would increase FPs and FNs, respectively (e.g., some IRC bots use
multiple tokens in one message, while in general, FTP bots do not).

Of the 135 manually-verified 𝐿𝐿 identifiers, C3PO produced 14
FNs because of undocumented tokens resulting in 121 of 135 TPs.
The only FNs occurred during the IRC and WebDAV protocols iden-
tification via their 𝐿𝐿 implementation in the Rbot and Equationdrug
samples, respectively. Whenever we encountered undocumented
tokens, we subsequently added them to the protocol database. How-
ever, we retained our accuracy metrics results pre-modification as
it represents a more accurate depiction of C3PO’s protocol iden-
tification capability given the possibility of future undocumented
tokens. Overall, C3PO was 94% accurate in identifying protocols
making it robust enough to be applied to the large-scale study.

4.2 C&C Monitoring Capabilities Evaluation
Table 5 presents our evaluation of C3PO’s ability to identify C&C
monitoring capabilities. Columns 3-8 present the capabilities we
consider in our study, but C3PO can be extended to support other
capabilities. Their sub-columns are divided into two categories:
GT and C3PO represents the number of ground truth capabilities
identified and automatically identified, respectively. We found that
C3PO correctly identified 100 (TP) C&C monitoring capabilities.
Our GT analysis confirmed 104 capabilities, revealing 7 FPs, 4 FNs,
and an overall accuracy of over 94%.
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Table 5: Validating C&C Monitoring Capabilities Identification.𝑉𝑎𝑟 represents malware variants. GT and C3PO represent the number of manually verified
and automated capability identifiers per category, respectively.

Malware 𝑉𝑎𝑟

Browser
Password
Stealer

Service
Password
Stealer

Victim
Profiling

File
Exfiltration

Spying,
Live

Monitoring
Code

Reflection
Accuracy
Metrics

GT C3PO GT C3PO GT C3PO GT C3PO GT C3PO GT C3PO TP FP FN
Softcnapp 5 5 5 0 0 5 5 5 5 5 5 0 0 20 0 0
Cstealer 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1
Ragebot 2 0 0 0 0 2 2 2 2 0 2 2 2 6 2 0
Expiro 3 0 0 0 0 3 3 3 3 3 3 0 0 9 0 0

Sathurbot 2 2 0 0 0 2 2 2 2 2 2 0 0 6 0 2
Icloader 1 0 0 0 0 1 1 1 1 1 1 0 0 3 0 0

Alma 2 0 0 0 0 2 2 2 2 2 2 0 0 6 0 0
Zbot 4 0 0 0 0 0 1 0 0 4 4 0 0 4 1 0
Rbot 2 1 1 0 0 2 2 2 2 2 2 2 2 9 0 0

Slackbot 4 0 0 0 0 4 4 4 4 0 0 0 0 8 0 0
Delf 4 0 0 0 0 4 4 0 4 4 4 0 0 8 4 0

Blackhole 3 2 1 2 2 3 3 3 3 3 3 0 0 12 0 1
Equationdrug 2 0 0 0 0 2 2 2 2 2 2 2 2 8 0 0

Total 35 11 8 2 2 31 31 26 30 28 30 6 6 100 7 4

Table 5 shows that Victim Profiling ranks highest among the
capabilities, accounting for 29% (31 of the 104) of the capabilities.
Next are Live Monitoring and File Exfiltration, with 28 (27%) and
26 (25%) capabilities, respectively. Toward covert monitoring, this
shows that the authorities can expect to locate victim information
on the C&C server including system information, personal files,
and legally admissible evidence of spying.

Among 35 variants, 3 of them (Ragebot, Zbot, and Delf) had 7
FPs from the Victim Profiling, File Exfiltration, and Live Monitoring
identification. Next, 3 of the FNs occurred in the Browser Pass-
word Stealer while 1 occurred in the Victim Profiling distributed
among Cstealer, Sathurbot, and Blackhole. Further investigation
revealed that both the FPs and the FNs are attributed to issues ex-
perienced using angr either due to unresolved symbolic constraints
during CFG generation or temporary variable reuse causing spuri-
ous dependencies in the backward slice. However, our investigation
confirmed these are rare occurrences. Given the low number of
FPs and FNs, and over 94% accuracy, C3PO provides the means to
effectively identify C&C monitoring capabilities.

5 LARGE-SCALE DEPLOYMENT
We deployed C3PO to measure over-permissioned protocols and
C&C monitoring capabilities. We demonstrate that our automated
measurement pipeline provides a scalablemeans for over-permissioned
bot analysis.

5.1 Post Deployment Dataset Highlights
Deploying C3PO on our dataset exposed a growing trend of over-
permissioned protocol use in malware. C3PO revealed that 62,202
(over 30%) of malware use one or more over-permissioned proto-
cols. Figure 4 illustrates the adoption of over-permissioned pro-
tocols per bot from April 2006 to June 2020. We found that over-
permissioned protocol use peaked in years 2015-2019, which also
accounted for 80% of all over-permissioned protocols C3PO identi-
fied in our study. Interestingly, Figure 4 shows that not only has the
use of over-permissioned protocols increased, but also the number
of protocols used per malware. While a single bot using multiple
over-permissioned protocols was uncommon, this practice is more
prevalent now than ever before with over 4,000 bots using multiple
protocols. In fact, since 2019 alone, C3PO found over 1,500 malware
that used more than one over-permissioned protocol.

C3PO found the remainder of the malware (i.e., 70%) in our
dataset used only HTTP-based communication for command and
control. The prevalence of HTTP-based communication in our
dataset is inline with observations by Peredisci et. al. [48], who
reported that 75% of malware exhibit network activity via HTTP-
based communication. This prevalence led many prior works [49]–
[51] to target HTTP-based malware exclusively. HTTP-based mal-
ware send and receive data in HTTP packets using non-standard
message protocols. Unlike the protocols considered in this paper,
these HTTP-based messages do not readily provide authorities ac-
cess to the C&C server. As such, these HTTP-only malware do not
function as over-permissioned bots.

5.2 Over-Permissioned Bot Landscape
Table 6 presents interesting insights into over-permissioned proto-
col use. Columns 1 shows the protocols we studied; Column 2, the
number of protocol uses; and Columns 3-4, the total number of 𝐻𝐿

and 𝐿𝐿 identifiers found. Columns 5-6 show their distribution with
temporal protocol changes of each sample displayed in Column
8. The total number of malware families observed using specific
protocols, as well as the first and last time the malware was seen in
2006-2020 are presented in the remaining columns.

C3PO detected 65,739 uses of over-permissioned protocols. Con-
firming our hypothesis that protocol efficiency supports continued
prevalence, FTP is predominant among all protocols occurring
53,687 accounting for 81% of protocols identified (Column 2, Row
1). Besides, FTP has been consistently used across 88% of the 8,512
malware families over 15 years. This confirms our suspicion that
malware authors either do not realize the inherent vulnerabilities
from using over-permissioned protocols or simply do not expect
them to be used as IVs. We expect the latter to be the case given the
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Figure 4: #Over-Permissioned Protocols Per Bot Since 2006.
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Table 6: Distribution of Over-Permissioned Bots Identified During the Large-Scale Study.

Over-Permissioned
Protocol #Used #Protocol ID Identifiers/Protocol Temporal Changes

2006 - 2020 #Families First
Seen

Last
Seen

𝐻𝐿 𝐿𝐿 Min Avg Max

FTP/TFTP 55,494 32,531 22,963 2 4 9 8,163 2007-07 2020-06

BitTorrent/𝜇TP 953 892 61 1 7 21 56 2011-04 2020-06

WebDAV 2,963 2846 117 8 16 21 135 2012-07 2020-06
MongoDB 1 0 5 5 5 5 1 2019-11 2019-11
ODBC 670 670 0 1 3 12 126 2010-08 2020-05
MySQL 262 262 53 1 5 11 53 2008-12 2020-05
PostgreSQL 117 117 25 2 4 7 25 2009-06 2019-10
MQTT 24 23 18 1 2 3 1 2014-04 2015-12
IRC 10,458 0 10,458 1 3 6 400 2006-10 2020-06

Total 65,7391 34,495 33,607 2 3 7 8,512 1 2006-10 2020-06
1: This is not the sum of this column, but the total number of protocols uses or malware families (see column 9) detected.

known FTP insecurities. Thus, bot orchestrators are unknowingly
leaving the front door wide open, a trend our study sheds light on.

From Table 6, Column 8 illustrates the number of protocol iden-
tifiers used in malware since 2006. The number of identifiers per
sample has generally fluctuated, except for the MQTT and IRC
protocols. Similar to the findings in section 4, IRC implementations
generally use 3 tokens to communicate with the C&C server as
illustrated in the average identifiers per use (Column 6). The total
distribution of protocol identifiers found (min=2, avg=3, max=7)
indicates that many protocols use multiple APIs or tokens giv-
ing authorities multiple monitoring vantage points. Notably, the
MongoDB protocol was used in the Cstealer malware then sponta-
neously disappeared from use resulting in a single spike in Column
8. This is likely due to its rapid discovery and public reporting [52],
which immediately revealed a weakness resulting from the use of
the over-permissioned MongoDB protocol. We expect to see a resur-
gence of the MongoDB protocol as some malware authors continue
to prefer efficiency and ease of use over security. Furthermore, the
temporal changes in levels of protocol implementations (i.e., identi-
fiers used) gives us insights into the type of protocol capabilities
enabled; e.g., if C3PO identifies FTPGetFile or FTPPutFile in the
malware, the C&C supports at least FTP read/write. However, as
our study shows, it is safe to assume full protocol implementation
since malware operators adopt over-permissioned protocols for
ease of use and scalability.

Table 6, Row 8 (MQTT ) shows a similar trend as the MongoDB
protocol. However, the use of the MQTT protocol is observed over
a longer period. The Expiro malware is the only malware family
detected using the MQTT protocol and disappeared from detection
in 2015. Interestingly, industry experts observed and reported on a
resurgence of Expiro in 2017 [53] adding clarity to our observation,
given that we did not detect it between 2015 and 2020. Industry
experts also reported improvements in Expiro, which we believe
correlates with its lack of presence in recent years, likely stemming
from its exclusion of the MQTT protocol.

From Table 6, we also observe that 𝐿𝐿 identifiers are the majority
with 33,636 detected versus 33,486 𝐻𝐿 identifiers, although, only
by a slight margin. However, the majority of 𝐿𝐿 implementations
resulted from FTP and IRC protocols. As discussed, the IRC protocol
has no 𝐻𝐿 implementation. Although many IRC bots are no longer
active because of the centralized architecture, which has proven
limitations, new IRC malware have been detected in 2020. We now

turn our attention to the 8,512 malware families identified. This
is important as it illustrates the wide-scale applicability of C3PO
across multiple malware families and variants.

5.3 C&C Monitoring Capabilities at Scale
C&C monitoring capabilities guide covert monitoring after C&C
server infiltration. As shown in Table 7, C3PO identified 443,905
C&C monitoring capabilities in 62,202 over-permissioned bots re-
vealing an average of 7 capabilities per bot. Notably, Victim Profiling

Table 7: C3PO Identification of C&C Monitoring Capabilities Mapped to
Over-Permissioned Protocols.

C&C Monitoring
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Service Password Stealing
WiFi Stealer 1 0 0 0 0 0 0 0 0 1
Kerberos Stealer 3 0 0 0 0 0 0 1 0 4
Windows Sys. Stealer 7 0 0 0 0 1 0 1 0 9
Subtotal 11 0 0 0 0 1 0 2 0 14

Code Reflection
Code Reflection 202 0 140 1 0 6 2 77 0 428
Subtotal 202 0 140 1 0 6 2 77 0 428

Browser Password Stealing
Internet Exp. Stealer 1,611 0 6 0 0 1 0 11 0 1,629
Chrome Stealer 812 0 0 1 1 5 0 5 0 824
Mozilla Stealer 2,103 0 496 3 0 2 0 24 0 2,628
Subtotal 4,526 0 502 4 1 8 0 40 0 5,081

File Exfiltration
High-level Protocols 6,891 6 1188 0 0 65 2 60 0 8,212
Raw Socket Transfer 52,223 110 1168 210 0 510 110 6,374 24 60,729
Subtotal 59,214 116 2,356 210 0 575 112 6,434 24 69,041

Spying/Live Monitoring
Audio Capture 10,788 1 62 30 0 15 0 86 0 10,982
Keylogger 39,551 84 2,296 185 0 348 113 4,256 24 46,857
Screen Capture 52,458 109 2,524 220 0 537 110 6,469 24 62,451
Subtotal 102,797 194 4,882 435 0 900 223 10,811 48 120,290

Victim Profiling
Victim Locale Info. 51,924 99 2,462 217 0 512 98 6,441 24 61,777
System OS Details 52,354 110 2,518 222 1 530 110 6,469 24 62,338
Registry-stored Info. 52,354 110 2,512 225 1 528 98 6,471 24 62,323
Live OS State 52,564 110 2,510 226 1 534 117 6,477 24 62,563
Subtotal 209,196 420 10,002 890 3 2,104 423 25,858 92 249,051

Total 375,946 730 17,882 1,540 4 3594 760 43,222 164 443,905
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Table 8: Evolution of the Top 10 Families of Over-Permissioned Bots Detected in our Dataset.

Malware
Family

#Over-Permissioned
Bots

Over-Permissioned
Protocols

Protocol Use Evolution of
Protocol Use
2006 - 2020

C&C Monitoring
Capabilities1

# C&C Monitoring
Capabilities

Evolution of C&C
Monitoring Capabilities

2006 - 2020Min Avg Max Min Avg Max

Dinwod 9,713 FTP 1 1 1 BPS, VP, FE, LM 3 3 4
Autoit 5,763 FTP, IRC 1 1 2 BPS, VP, FE, LM 3 3 4
Softcnapp 4,382 FTP, IRC, ODBC 1 1 2 BPS, VP, FE, LM 3 3 4
Delf 4,331 FTP, IRC, MySQL, TFTP, ODBC 1 1 3 BPS, VP, FE, LM, CE 3 3 5
Wabot 2,388 IRC 1 1 1 VP, FE, LM 3 3 3
Fareit 1,479 FTP, IRC, ODBC 1 1 2 BPS, VP, FE, LM 2 3 4
Sivis 1,167 FTP, IRC, ODBC, MySQL, Bittorrent 1 1 3 BPS, VP, FE, LM, CE 3 3 5
Lamer 1,019 FTP, IRC, ODBC 1 1 2 BPS, VP, FE, LM 3 3 4
Virut 998 FTP, IRC, ODBC, MySQL 1 1 3 BPS, VP, FE, LM 3 3 4
Snojan 897 FTP, IRC 1 1 2 BPS, VP, FE, LM 3 3 4
1: BPS = Broswer Pwd Stealing, VP = Victim ID, FE = File Exfiltration, LM = Live Monitoring, CE = Code Execution (see Table 7)

and Live Monitoring account for the majority of capabilities, at 56%
and 27% with 249,051 and 120,290 identifications, respectively. It
follows that the majority of over-permissioned bots use techniques
that can be applied more broadly to information stealing, which
Victim Profiling and Live Monitoring provide. File Exfiltration is the
next commonly used (i.e., 69,041 capabilities), 15% of all capabilities
identified.

Of all 16 capabilities, 375,946 or 88% and 43,222 or 10% of them oc-
cur in FTP and IRC protocols, respectively. C3PO’s ability to extract
IVs for these protocols alone allows the authorities to covertly mon-
itor over 85% of over-permissioned bots in our dataset, which we
believe is representative of the larger malware landscape. Another
observation is that although password stealers capture sensitive
victim information, their tactics are tailored for a limited number
of applications or services, reducing the scale of their impact ex-
plaining the low numbers in the password stealing categories at
5,095 or 0.01%. Overall, C3PO reveals the composition and content
of C&C servers through C&C monitoring capabilities identification
allowing it to provide targeted monitoring post infiltration.

5.4 Ranking Over-Permissioned Bot Families
Table 8 presents the protocols and the C&C monitoring capabilities
identified in the top 10 malware families of our study. The Dinwod
malware family ranks the highest with 9,713 over-permissioned
bots. Dinwod only uses FTP and has remained consistent, even in
the analysis of capabilities that include Browser Password Steal-
ing (BPS), Victim Profiling (VP), File Exfiltration (FE), and Live
Monitoring (LM), averaging 3 capabilities per sample.

Another observation from Table 8: FTP is used in 9 of the top 10
malware families as expected since it is the most prominent over-
permissioned protocol in our dataset. About half of the families
in Table 8 maintain a generally consistent number of protocols
used, with the exception of Delf, Sivis, and Virut, with 3 maximum
protocols used each, attributing to the spikes in Column Evolution
of Protocol Use.

Lastly, the top capabilities — File Exfiltration, Live Monitoring,
and Victim Profiling — appear in all 10 families. However, we did
not expect Browser Password Stealing in 9 families since it accounts
for 1.26% of all C&C monitoring capabilities (ref. Table 7). From this
study, we can infer that while the majority of over-permissioned
bots can be considered Information Stealers, many of the top mal-
ware families are Password Stealers.

5.5 Packed Malware
C3PO uses a hybrid approach to analyze packed malware (subsec-
tion 3.1). We present the most common packers encountered in
our study in Table 9 and use the packer taxonomy proposed by
Ugarte-Pedrero et al. [29]. Column 1 lists these packer types, and
Column 3 shows the number of packed malware that use the pack-
ers3 presented in Column 2. The packer types range from Type-I
to Type-VI, which also represent their order of complexity [29].

For clarity, Type-I packers are the easiest to unpack only using
a single unpacking routine before transferring control to the mal-
ware payload. Type-II packers use multiple layers of packing, only
transferring control after the last layer is complete. Like Type-II
packers, Type-III is multi-layered but does not unpack in a top-
down manner and instead uses complex layer organization. While
Type-IV packing can use single or multi-layers, the unpacking rou-
tine is interwoven with the malware payload switching control back
and forth. Type-V and Type-VI are quite similar to Type-IV, except
more and more malware payload code is interwoven increasing the
complexity of the unpacking routine.

From Table 9, we see that C3PO can unpack and analyze samples
packed with Armadillo (Row 3), i.e., it can handle the most complex
category of packers. Of the 62,202 over-permissioned bots, C3PO
unpacked 10,237 malware. The remainder of the samples were not
packed. In our dataset, C3PO did not encounter anymalware packed
with Type-II, Type-IV, and Type V packers. But given its ability to
handle Type-VI packers, we believe that C3PO is robust enough to
enable a large-scale study of modern malware.

6 C3PO APPLIED
We present two over-permissioned bot case studies to illustrate the
efficacy of our techniques. We focus on the cases that use the most
prevalent FTP over-permissioned protocol. We redact the C&C
server information because the servers are still active as of this
3Packers are identified using PackerID [54]

Table 9: Packers Encountered in our Dataset.

Packer Type [29] Packer # Malware

Type-I UPX 9,372
BobSoft Mini Delphi 86

Type-III ASPack 48
ASProtect 22

Type-VI Armadillo 709

Total 10,237
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writing, but present the monitoring outputs we extracted adhering
to ethical practices, which we describe next.
Ethical Considerations. We follow the precedence established
in previous works [16], [25], [55], [56] while exposing the weak-
nesses that make C&C servers vulnerable to infiltration. Besides,
Burnstein [57] provides legal and ethical conduct for cybersecurity
research, arguing that injecting traffic into C&C servers can be
considered consent when using the communication channel the bot
orchestrators provided to the enslaved systems. Similarly, we use
the bot-to-C&C channel and the authentication details provided
to us through the malware. Moreover, after verifying access per-
missions we (1) only retrieve the metadata (e.g. file quantity, table
schema, etc.) of the service being investigated (FTP, MongoDB, etc.)
and (2) perform no write operations. We emphasize that we do not
exploit, disrupt, or attempt takedown of C&C servers, avoiding any
claim of tortious interference as described in Mouton vs. VC3 [58].

6.1 Case Study 1: Steam
The Steam malware is a Remote Access Trojan (RAT) [59] first
discovered in 2016 and persists today. C3PO identified FTP in Steam
and extracted IVs and C&C monitoring capabilities (Table 10, Rows
1-3). Leveraging the IVs, C3PO covertly monitored the Steam C&C
server resulting in the identification of approximately 50 MB of data
(522 files in 5 directories). Of the files, 27% of them have “game”-
related names like matchroom and tournament confirming that our
sample is indeed tailored for the Steam platform.

C3PO identified Victim Profiling and File Exfiltration, so we ex-
pected to find a large number of files on the C&C server containing
stolen victim information. Since this malware is relatively new, it is
not surprising that we only found less than 20% of these files, but we
expect it to grow as the malware spreads. However, C3PO identified
two data files whose filenames began with ssfn. The authorization
files for the Steam online gaming platform also begin with ssfn.
These files are likely encrypted since their entropy values are 7.90
and 7.92 (on a scale of 0.0 - 8.0), respectively. These authorization
files could either be stolen files for authentication to the Steam
platform (as suggested by C3PO’s File Exfiltration C&C monitoring
capabilities), or they belong to the bot orchestrator. For the latter
case, an incident responder can use these files to pursue attribution
since it provides access to the bot orchestrator’s account.

C3PO also revealed filenames that piqued our interest. Specif-
ically, several files are named in the Russian language, the C&C
server’s likely country of origin. Furthermore, C3PO discovered a
JavaScript file containing code that looked for cross-site scripting

Table 10: C3PO’s Steam Malware Analysis Results.

Protocol FTP

Infiltration
Vectors

Username: j91{***}
Password: Dom{***}
Server: {***}.beget.tech
Port: 21

C&C Monitoring
Capabilities

Victim Profiling and
File Exfiltration

Covert
Monitoring

Outputs

(1) Country of origin, (2) Steam Authentication Files
(3) XSS injection script

(XSS) vulnerabilities. This suggests further malicious intent to per-
petrate additional cybercrimes. Our findings are further confirmed
by a Steam analysis report [59] validating C3PO’s effectiveness in
covert monitoring and extracting valuable insights.

6.2 Case Study 2: Detplock
The Detplock malware is another RAT first seen in 2016 and is
still active today. This malware allows the bot orchestrator to ex-
ecute commands on the infected machines. Table 11 summarizes
C3PO’s covert monitoring results by analyzing the DeptLock mal-
ware. C3PO extracted IVs such as the username, password, server
address, and port, as shown in Table 11, Row 1. Based on the sever
address suffix .ko.cr, the C&C server is likely located in South
Korea. This C&C server responds to FTP queries, which we used to
only catalog file metadata, enumerating directories, keeping count
of the number of directories and files as well as file extensions
and file sizes. Overall, we identified approximately 640MB of data
including over 2,500 files across 47 directories. Of the 31 file exten-
sions found, the most common extensions were PNG (44%), HTML
(34%), TXT (8%), and EXE (6%).

C3PO also identified Victim Profiling, Live Monitoring, and File
Exfiltration capabilities (Table 11, Row 2). From covert monitor-
ing, C3PO discovered many PNG files, which was expected since
its analysis showed that Detplock performed Live Monitoring by
taking PNG screenshots. This confirms the effectiveness of C3PO’s
C&C monitoring capabilities towards covert monitoring. C3PO also
located the userData directory which is used to store victim infor-
mation, corresponding to the Victim Profiling malware capability
(Table 11, Row 3). While this directory was empty upon infiltra-
tion, convert monitoring allows us to regularly monitor for added
infected systems to understand the scope of infection and enable
peer disclosure.

Lastly, C3PO foundmalicious files on the C&C server’s download
directory, confirming that Detplock spreads other payloads. Specifi-
cally, 7 of the 158Windows EXE and 2 BIN files contained suspicious
metadata. Their signatures revealed ASPack v2.12 packing and their
hash search on VirusTotal [60] confirmed maliciousness. Although
the C&C monitoring capabilities did not infer additional payloads
on the C&C server, our ability to covertly infiltrate and leverage
over-permissioned FTP functionality to quickly query the server
revealed at least additional 9 malicious files.

Table 11: C3PO’s Detplock Malware Analysis Results.

Protocol FTP

Infiltration
Vectors

Username: eg{***}
Password: vrg{***}
Server: {***}.co.kr
Port: 21

C&C Monitoring
Capabilities

Victim Profiling, Live Monitoring,
and File Exfiltration

Covert
Monitoring

Outputs

(1) PNG files confirming the live monitoring capability
(2) 9 malicious executables and binaries
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7 RELATEDWORK
C&C Infiltration and Monitoring. C&C monitoring research
has focused on P2P botnets [11], [61]–[64]. These works are trans-
parent to botnet architectures and inspired our monitoring tech-
niques. Dispatcher [65] analyzes botnet protocols to enable infiltra-
tion, but it does not consider the plethora of commodity protocols
used inmalware. Conversely, C3PO detects and exploits weaknesses
in several widely used protocols, with room for growth, and en-
ables a scalable approach to covert C&C monitoring. Similar works
have also achieved infiltration of botnets that led to their disrup-
tion [66] validating the necessity of not only monitoring, but the
immediate benefits of covert infiltration. Although successful, this
attempt targeted weaknesses specific to the MegaD botnet and also
used "Google hacking" for information gathering. Lastly, domain
seizure approaches provide another relevant avenue to monitoring
by taking over the botnet [1], [3]–[6], [17] but these approaches
required detailed reverse engineering efforts to understand domain
generating algorithms. Instead, C3PO analyzes the malware alone
extracting hidden information to enable infiltration towards covert
monitoring.
Protocol Identification. Several works infer protocol formats
based on network traces [67]–[70] or after first understanding how
the binary processes network messages [65], [71]–[73]. However,
these approaches rely on capturing all protocol functionality, which
can limit the overall effectiveness when full network traces are not
captured. Conversely, protocol identification is only one of the
multiple enabling techniques employed by C3PO towards our goal
of providing authorities with leverage over C&C servers through
covert monitoring. Furthermore, C3PO uses binary analysis to iden-
tify protocols based on their APIs, commands, or keywords that
are invoked in a binary, which is more scalable when full network
traces cannot be collected (e.g., with defensive malware). Differ-
ent from prior works, solely identifying protocols is orthogonal to
enabling authorities to take action against malicious campaigns,
enabled by C3PO.
Selective Symbolic Execution. Symbolic Execution is used to
find software bugs [74]–[76], generate test cases [77]–[79], and
improve the execution of dynamic analysis [80]–[82]. Specifically,
MalMax [82], X-Force[80], and J-Force [81] used forced execution
for exploration. While MalMax uses backtracking to enable path
exploration, J-Force mutates satisfiable branch predicates to ex-
plore un-visited paths. Similarly, Smartgen[83] proposed Selective
Symbolic Execution for the Android framework using solved path
constraints to guide execution. C3PO’s iSSE traversable paths are
not determined by derived inputs, but instead by the backward slice
of the execution target, which constrains feasible paths reducing
the exploration area to identify IVs.
Malware Capability Analysis. Several works use behavior anal-
ysis [84]–[86], behavior modeling [87]–[89], and network traffic ob-
servation [90], [91] to identify malware. Those that detect malware
capabilities [84], [87], [88], [92] are either specific to the Android
framework or use dynamic analysis to identify just enough capa-
bilities for malware detection. On the contrary, C3PO introduces a
scalable approach to identify 16 malware capabilities and offers the
option of extending support for others using capability modeling.

8 DISCUSSION AND LIMITATIONS
Domain Generating Algorithms. DGA-based malware allows
bot orchestrators to move from centralized architectures to more
robust architectures using automatically generated pseudo-random
C&C domain names [93]. This technique allows over-permissioned
bot orchestrators to subvert persistent infiltrations through C3PO
since the C&C domain names are dynamically generated. Other
malware adopts a similar approach, using cloud-based services to
retrieve C&C domain names [94]. These categories of malware pose
significant challenges for C3PO. However, they are not insurmount-
able, as C3PO can be used to complement existing techniques to
identify DGA future candidate domains, as demonstrated by Le et
al. [6].
Subverting Dynamic Memory Image Extraction. C3PO’s pri-
mary technique for memory image extraction is API hooking. As an
automated pipeline, C3PO is limited in its ability to spoof specific
environments for malware but could be combined with techniques
such as forced execution to overcome this [80], [81]. However, sand-
boxes can also be used to augment C3PO in-lieu of memory image
extraction. For example, S2E [75] enables symbolic execution within
a sandbox to explore thousands of system paths. Toward unpacking,
there are three evasion types to thwart API hooking: stolen code,
child process, and process hollowing, often seen in the Themida,
PEP, and Pespin packers [28]. Although C3PO can handle Type-I,
III, and IV packers, it cannot analyze malware that uses virtual-
ization packed techniques. These packers convert programs into
bytecode increasing complexity and eludes C3PO memory image
extraction. However, virtualization packers account for less than
2% of packed malware, while Type-I packers (e.g., UPX) account
for over 55% [29].
Custom Low-level Protocol Implementations. Some malware
prefer custom protocol implementations to make their analysis
more difficult, but the uniqueness of custom protocols supports
signature development increasing their chances of IDS detection.
So, C3PO focuses on protocol implementations that adhere to offi-
cial protocol specifications. However, since C3PO relies on official
APIs and tokens, custom tokens evade C3PO’s identification. Even
if we consider well-known (but not official) tokens, since C3PO
analyzes the client-side binary alone, it cannot match a custom
keyword to a protocol without knowing how the server parses it.
While malware authors can use official protocol commands to trick
analysts in misidentifying the protocol used, we have not observed
this practice during our large-scale study. In order to support the
identification of over-permissioned custom protocols, the integra-
tion of tools such as Prospex [73] can be used to automatically
reverse engineer custom protocols revealing identifiers that can be
exploited for covert C&C server monitoring. Although extracting
relevant information from the protocol, then adding them to C3PO’s
protocol database requires some effort upfront, maintenance is all
that is required after allowing seamless integration into C3PO.

9 CONCLUSION
This paper presented C3PO, a measurement pipeline that studied
the evolution of over-permissioned protocols in 200k malware span-
ning back 15 years and how they can be leveraged to provide covert
C&C server monitoring. C3PO identified 62,202 over-permissioned
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bots across 8,512 families identifying infiltration vectors that allow
C3PO to spoof bot-to-C&C communication. C3PO also identified
443,905 C&C monitoring capabilities which reveal the composition
and contents of the C&C server to guidemonitoring post infiltration.
We deployed C3PO on two bots with live C&C servers validating
its ability to identify over-permissioned protocols, infiltrate C&C
servers, and leverage C&Cmonitoring capabilities to achieve covert
monitoring. Furthermore, C3PO identified over 2500 files, some of
which contain victim information, additional malicious payloads,
exploitation scripts, and stolen credentials providing legally ad-
missible evidence to engender attempts of botnet disruptions and
takedowns. We offer C3PO to aid the authorities as they seek to con-
tain and eradicate botnets through covert C&C server monitoring:
https://cyfi.ece.gatech.edu/.
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