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Abstract
The remediation of ongoing cyber attacks relies upon
timely malware analysis, which aims to uncover
malicious functionalities that have not yet executed.
Unfortunately, this requires repeated context switching
between different tools and incurs a high cognitive load
on the analyst, slowing down the investigation and
giving attackers an advantage. We present Forecast,
a post-detection technique to enable incident responders
to automatically predict capabilities which malware
have staged for execution. Forecast is based on a
probabilistic model that allows Forecast to discover
capabilities and also weigh each capability according to
its relative likelihood of execution (i.e., forecasts).
Forecast leverages the execution context of the
ongoing attack (from the malware’s memory image) to
guide a symbolic analysis of the malware’s code. We
performed extensive evaluations, with 6,727 real-world
malware and futuristic attacks aiming to subvert
Forecast, showing the accuracy and robustness in
predicting malware capabilities.

1 Introduction

Cyber attack response requires countering staged
malware capabilities (i.e., malicious functionalities
which have not yet executed) to prevent further
damages [1], [2]. Unfortunately, predicting malware
capabilities post-detection remains manual, tedious, and
error-prone. Currently, analysts must repeatedly carry
out multiple triage steps. For example, an analyst will
often load the binary into a static disassembler and
perform memory forensics, to combine static and
dynamic artifacts. This painstaking process requires
context switching between binary analysis and forensic
tools. As such, it incurs a high cognitive load on the
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analyst, slowing down the investigation and giving the
attackers an advantage.

To automate incident response, symbolic execution is
promising for malware code exploration, but lacks the
prior attack execution state which may not be
re-achievable after-the-fact (e.g., concrete inputs from
C&C activity). Environment-specific conditions, such as
expected C&C commands, limit dynamic and concolic
techniques (e.g., [3]–[14]) from predicting inaccessible
capabilities. In addition, these techniques depend on
dissecting a standalone malware binary or running it in
a sandbox. However, malware are known to delete their
binary or lock themselves to only run on the infected
machine (hardware locking). Worse still, researchers
found that fileless malware incidents (i.e., only resides
in memory) continue to rise [1], [15], [16].
Having access to the right execution context is

necessary to guide malware into revealing its
capabilities. Malware internally gather inputs from
environment-specific sources, such as the registry,
network, and environment variables, in order to make
behavior decisions [11], [17], [18]. Therefore, an ideal
and practical input formulation for malware can be
adapted from this internal execution state in memory
bearing the already-gathered input artifacts. It turns
out that anti-virus and IDS already collect memory
images of a malicious process after detecting it [19]–[21].
A malware memory image contains this internal
concrete execution state unique to the specific attack
instance under investigation.
During our research, we noticed that if we can

animate the code and data pages in a memory image,
and perform a forward code exploration from that
captured snapshot, then we can re-use these early
concrete execution data to infer the malware’s next
steps. Further, by analyzing how these concrete inputs
induce paths during code exploration, we can predict
which paths are more likely to execute capabilities
based on the malware’s captured execution state. Based
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on this idea, we propose seeding the symbolic
exploration of a malware’s pre-staged paths with
concrete execution state obtained via memory image
forensics. Through this, we overcome the previous
painstaking and cognitively burdensome process that an
analyst must undertake.

We present Forecast, a post-detection technique to
enable incident responders to forecast what capabilities
are possible from a captured memory image. Forecast
ranks each discovered capability according to its
probability of execution (i.e., forecasts) to enable
analysts to prioritize their remediation workflows. To
calculate this probability, Forecast weighs each
path’s relative usage of concrete data. This approach is
based on a formal model of the degree of concreteness
(or DC(s)) of a memory image execution state (s).
Starting from the last instruction pointer (IP) value in
the memory image, Forecast explores each path by
symbolically executing the CPU semantics of each
instruction. During this exploration, Forecast models
how the mixing of symbolic and concrete data
influences path generation and selection. Based on this
mixing, a “concreteness” score is calculated for each
state along a path to derive forecast percentages for
each discovered capability. DC(s) also optimizes
symbolic analysis by dynamically adapting loop bounds,
handling symbolic control flow, and pruning paths to
reduce path explosion.
To automatically identify each capability, we

developed several modular capability analysis plugins:
Code Injection, File Exfiltration, Dropper, Persistence,
Key & Screen Spying, Anti-Analysis, and C&C URL
Connection. Each plugin defines a given capability in
terms of API sequences, their arguments, and how their
input and output constraints connect each API.
Forecast plugins are portable and can easily be
extended to capture additional capabilities based on the
target system’s APIs. It is worth noting that
Forecast’s analysis only requires a forensic memory
image, allowing it to work for fileless malware, making
it well-suited for incident response.
We evaluated Forecast with memory images of

6,727 real-world malware (including packed and
unpacked) covering 274 families. Forecast renders
accurate capability forecasts compared to reports
produced manually by human experts. Further, we show
that Forecast is robust against futuristic attacks that
aim to subvert Forecast. We show that Forecast’s
post-detection forecasts are accurately induced by early
concrete inputs. We empirically compared Forecast
to S2E [6], angr [22], and Triton [23] and found that
Forecast outperforms them in identifying capabilities
and reducing path explosion. Forecast is available
online at: https://cyfi.ece.gatech.edu/.

2 Overview

This section presents the challenges and benefits of
combining the techniques of memory image forensics
and symbolic analysis. Using the DarkHotel incident [2]
as a running example, we will show how incident
responders can leverage Forecast to expedite their
investigation and remediate a cyber attack.

Running Example - DarkHotel APT. DarkHotel
is an APT that targets C-level executives through spear
phishing [2]. Upon infection, DarkHotel deletes its
binary from the victim’s file system, communicates with
a C&C server, injects a thread into Windows Explorer,
and ultimately exfiltrates reconnaissance data. When an
IDS detects anomalous activities on an infected host, an
end-host agent captures the suspicious process memory
(i.e., DarkHotel’s), terminates its execution, and
generates a notification. At this point, incident
responders must quickly understand DarkHotel’s
capabilities from the different available forensic sources
(network logs, event logs, memory snapshot, etc.) to
prevent further damages.
Dynamic techniques [11]–[14] may require an active

C&C, which may have been taken down, to induce a
malware binary to reveal its capabilities. Because
DarkHotel only resides in memory, these techniques,
which work by running the malware in a sandbox,
cannot be applied.1 With only the memory image, an
analyst can use a forensic tool, such as Volatility [24],
to “carve out” the memory image code and data pages.
Based on the extracted code pages, symbolic analysis
can simulate the malware execution in order to explore
all potential paths. Unfortunately, existing symbolic
tools require a properly formatted binary and are not
optimized to work with memory images [7], [22], [23].
Ideally, an analyst can manually project these code

fragments into symbolic analysis and source concrete
values from the data pages to tell which code branch
leads to a capability. However, this back-and-forth
process of “stitching up” code with extracted memory
artifacts, involves context switching between symbolic
execution and the forensic tool. This places a very high
cognitive burden on the analyst. An analyst must also
handle challenges such as path explosion, API call
simulation [4], [22], [25]–[27], and concretizing API
arguments (e.g., attacker’s URL), which may not be
statically accessible in the memory image. Lastly, an
analyst must manually inspect APIs along each path to
infer high-level capabilities.

1Forensic memory images are not re-executable due to being
“amputated” from the original operating system and hardware.
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Figure 1: Forecast workflow. A memory image is used to reconstruct the original execution state. Concrete data is
utilized to explore code paths while API constraints are analyzed against plugins to forecast capabilities.

2.1 Hybrid Incident Response
Incident responders rely on memory forensics to identify
attack artifacts in memory images. However, memory
forensics alone, which is largely based on signatures,
misses important data structures due to high false
negatives [21]. On the other hand, symbolic execution
can explore code in the forward direction, but suffers
from issues such as path explosion [22]. To address
these limitations, Forecast combines symbolic
execution and memory forensics through a feedback
loop to tackle the shortcomings of both techniques.
Context-Aware Memory Forensics. Symbolic
analysis provides code exploration context to accurately
identify data artifacts that are missed by memory
forensics. For example, traditional forensic parsing of
DarkHotel’s memory image missed C&C URL strings
because they are obfuscated via a custom encoding
scheme. However, subsequent symbolic analysis of the
instructions that reference those bytes as arguments,
such as a strncpy API, allowed Forecast to correctly
identify and utilize these data artifacts in the memory
image. Moreover, targeted malware may employ tactics
that aim to subvert Forecast, using anti-forensics and
anti-symbolic-analysis, which we carefully considered in
our design and evaluation.

Memory image forensics provides concrete inputs that
can help symbolic analysis perform address
concretization, control flow resolution, and loop
bounding. In addition, memory forensics identifies
loaded library addresses in memory which allows
Forecast to perform library function simulation.
Path Probability. Given a memory image, the goal
is to utilize available concrete data to explore potential
code paths and forecast capabilities along them. By
analyzing how different paths are induced by concrete
memory image data, Forecast can derive the
probability that a path will reach a capability relative to
other paths. Forecast computes this probability
based on modeling how concrete and symbolic data
operations are influencing path generation and selection.
Forecast also leverages this probability metric as a
heuristic in pruning paths with the least concrete data.

2.2 Incident Response with Forecast

Forecast identifies capabilities originating from a
malware memory image in an automated pipeline. To
demonstrate this, we simulated DarkHotel’s attack and
memory capture, which involved setting up an IDS with
DarkHotel’s network signature and executing the
Advanced Persistent Threat (APT). Following
detection, the IDS signals the end host agent to capture
the DarkHotel process memory. We then input this
memory image to Forecast for analysis. In 459
seconds, Forecast reveals DarkHotel’s capabilities: a
C&C communication (i.e., mse.vmmnat.com), a file
exfiltration (i.e., of host information), and a code
injection (i.e., into Windows Explorer).

There are six stages for processing a forensic memory
image shown in Figure 1. 1 Forecast forensically
parses the memory image and reconstructs the prior
execution context by loading the last CPU and memory
state into a symbolic environment for analysis. In
analyzing the memory image, Forecast inspects the
loaded libraries to identify the exported function names
and addresses. Next, 2 Forecast proceeds to explore
the possible paths, leveraging available concrete data in
the memory image to concretize path constraints. 3
Forecast models and weighs how each path is
induced by concrete data and assigns a probability to
each generated path. 4 Forecast then uses this
probability as a weight to adapt loop bounds and prune
false paths, allowing Forecast to narrow-in on the
induced capability-relevant paths. 5 Forecast
matches identified APIs to a repository of capability
analysis plugins to report capabilities to an analyst.
Finally, 6 Forecast identifies three capabilities and
derives their forecast percentages from the path
probabilities as 31%, 15%, and 54%, respectively.
The first path matches the Code Injection plugin.

This path contains the APIs: VirtualAllocEx,
WriteProcessMemory, and CreateRemoteThread, which
are used in process injection. Analyzing the argument
constraints leading to these APIs reveals explorer.exe as
the target process. The second path matches the File
Exfiltration plugin. This path contains APIs
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getaddrinfo, SHGetKnownFolderPath, WriteFile, Socket,
and Send. Forecast inspects their arguments’
constraints to determine that the malware writes host
information to a file, which it sends over the network.
The File Exfiltration plugin concretizes the argument of
SHGetKnownFolderPath to reveal the file location
identifier: FOLDERID_LocalAppData. The third path
matches the C&C Communication plugin, which reveals
a sequence of network APIs including
InternetOpenUrlA. The plugin queries the API
constraints and concretizes InternetOpenUrlA’s
argument then reports that DarkHotel makes an HTTP
request to the mse.vmmnat.com domain.
Given these forecast reports, an incident responder

learns from the captured memory snapshot, that
DarkHotel will communicate with mse.vmmnat.com,
steal host data, and inject into Windows Explorer. This
will prompt the analyst to block the URL and clean up
the affected Explorer process mitigating further
damages. Forecast empowers the analyst to quickly
and efficiently respond to threats by alleviating the
cognitive burden and context switching required to
manually obtain the same results.

3 System Architecture

Forecast is a post-detection cyber incident response
technique for forecasting capabilities in malware memory
images. It only requires a memory image as input. The
output of Forecast is a text report of each discovered
capability (e.g., code injection), a forecast percentage,
and the target of the capability (e.g., injected process).

Reconstructing Execution Context. Forecast
parses the memory image to extract the execution state
(e.g., code pages, loaded APIs, register values, etc.) to
be used to reconstruct the process context. Static
analysis of the code pages is used to initialize symbolic
exploration. It explores each path beginning from the
last IP in the reconstructed process context.

Forecast symbolically executes the CPU semantics
of the disassembled code pages until an undecidable
control flow is encountered. To resolve this, Forecast
recursively follows the code blocks to resolve new CFG
paths. When a library call is reached, Forecast
simulates and symbolizes the call (discussed in §3.2).
Library call simulation introduces symbolic data for
each explored state, thus increasing the possibility of
state explosion. However, the DC(s) model (discussed
next) provides optimization metrics that enable
Forecast to dynamically adapt parameters for loop
bounding, symbolic control flow, and path pruning.

3.1 Modeling Concreteness to Guide
Capability Forecasting

Forecast models how available concrete data in a
memory image induces capability-relevant paths using
the degree of concreteness model (DC(s)). Degree of
concreteness is a property of execution states which
encapsulates the “mixing” of symbolic and concrete
operations. Symbolic operations (Sym_Ops) make use
of symbolic variables such as arithmetic involving
symbolic operands. Concrete operations (Con_Ops) do
not make use of symbolic variables. Sym_Ops and
Con_Ops are intrinsic to every state transition. A
state transition happens each time a basic block is
executed along an explored path. Based on the ratio of
Sym_Ops to Con_Ops, there exists an associated
degree of concreteness (DC(s)) value, which measures
how concrete or symbolic the current execution state is.
Forecasting is based on malware’s use of pre-staged

concrete data to execute a set of capabilities. Under
DC(s), paths that increasingly utilize concrete states are
more likely to reach a set of capabilities. As a result,
Forecast assigns DC(s) scores to states by modeling
their cumulative usage of concrete data. ThisDC(s) score
is then used to derive the probability, Pprob(s), that a
path will reach a capability relative to other paths. At
the end of exploration, the paths where capabilities are
found are analyzed based on their Pprob(s), to compute
forecast percentages of identified capabilities.
In addition to deriving forecasts, DC(s) detects

conditions that trigger path explosion (e.g., rapid path
splitting due to symbolic control flows), and makes
performance improvements including pruning false
states based on the degree of concreteness of every
active state (discussed in §3.2).
Formulation of DC(s). For DC(s) to forecast
capabilities, it must summarize two key features:
(1) the rate of change in the ratio of symbolic
operations to all operations, with respect to state
transitions, and (2) the cumulative state conditions
from a starting exploration state j to a target state n.
We normalize DC(s) with respect to the number of
states explored in our model. This bounds its value
between 0.0 and 1.0, which describes the current state
mixing. Formally, we define a state transition set τn,
which is a set of ordered states from sj to sn:

τn := {sj ,sj+1,sj+2, ...,sn} (1)

where state sj is the first state generated from a memory
image and 0≤ j ≤ n,n∈Z. Transitioning from state si−1
to si involves executing every operation (All_Opsi−1)
in the basic block BBi−1 at state si−1. The states in τn

are ordered based on the basic block ordering, i.e., the
basic block BBi maps to state si, and executing BBi
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(a) Symbolic exploration for the control-flow
graph, memory, and register values from the
memory image.

Let state 𝑠 be the current state after basic block 𝐵𝐵 is 

executed, and let 𝐷 𝑠 be the degree of concreteness 

at state 𝑠 .
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(b) Value derivation for degree of
concreteness (DC(s)).

(c) Plot of cumulative ratio vs states.

(d) Plot of DC(s) vs states.

Figure 2: Forecast recovers context from the process memory image, including the memory values and register
values for the captured state in (a). Using the degree of concreteness (DC(s)) formula, (b) calculates the values
for each transition state. Figure (c) plots the cumulative ratio of Sym_Ops to All_Ops accumulated across state
transitions. Figure (d) plots the degree of concreteness (DC(s)) across state transitions in the symbolic exploration.

transitions the program’s context to BBi+1 and state
si+1. The set All_Opsi is partitioned into 2 disjoint sets,
Sym_Opsi and Con_Opsi, such that:

Sym_Opsi∪Con_Opsi =All_Opsi (2)
and

Sym_Opsi∩Con_Opsi = ∅ (3)

For a state sn, we define the DC(sn) function as follows:

DC(sn) = 1−

n∑
i=j

|Sym_Opsi|
|All_Opsi|

|τn|
(4)

where |Sym_Opsi| is the cardinality of the Sym_Ops
performed to reach state si and |All_Opsi| is the
cardinality of All_Ops performed to reach state si.
Further, |τn| is the cardinality of the state transitions
from state sj to sn.
Tracking the cumulative ratio of Sym_Opsi to

All_Opsi for each state transition enables us to
calculate DC(s) instantaneously without iterating
through the previous states sj to sn. An extended form
of DC(s) that allows us to calculate its instantaneous
value is given as follows:

DC(sn) = 1− δ

δT
Cumul_Ratio(sn) (5)

where, for all transition states T , Cumul_Ratio(sn) is
the sum of the states’ ratio for states sj to sn, and
defined as:

{∀si ∈ T : Cumul_Ratio(sn) :=
n∑

i=j

|Sym_Opsi|
|All_Opsi|

} (6)

An Example of DC(s) Computation. Figure 2 is
a working example to show the computation of DC(s).
Figure 2a depicts a recovered CFG and memory and
register values from the memory image. Symbolic
execution starts at basic block BB1 and ends at BB4.
We annotate each basic block to show which
instructions are Sym_Ops based on the register or
memory values when the basic block is being executed.
Notice that because register edx at BB2 and memory
address 0x732460 at BB2 have concrete values, only one
branch is taken by the conditional jump instructions at
the end of BB2. For this reason, BB5 is not explored.
Symbolic data can be introduced by I/O-related
function calls and calls to functions that are simulated
based on Forecast’s function models. Such function
calls create symbolic variables within the memory dump
which causes a mixing of symbolic and concrete data.

Following along with Figure 2a, Figure 2b computes
DC(s) for each state (basic block) transition. For
example, DC(s1) = 0.67 when we transition to state s2,
then it increases to 0.83 as we transition from s2 to s3.
For each DC(si) value derived in Figure 2b, we plot
them against the transition states in Figure 2d.
Figure 2c plots the Cumul_Ratio(si) for each state
(shown in black). The instantaneous Cumul_Ratio(sn)
function is a straight line (Cumul_Ratio(sn) = mT )
drawn from origin to the point sn ∈ T , where m is the
slope. The derivative of Cumul_Ratio(sn) =mT gives
the instantaneous DC(sn) (Equation 5).

Path Probability. Given m current states, the path
probability of a path p, with current state s, is derived
by dividing s’s DC(s) by the summation of the DC(s)
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Algorithm 1 The Degree of Concreteness (DC(s))
Input: PATHS: Explored program paths in a memory image
Output: DC(s): ∀s ∈ path,∀path ∈ P AT HS

. Initialize Cumul_Ratio for each explored path p
for path p ∈ P AT HS do

Cumul_Ratio← 0
T ← 0

. Compute DC(s) for each state s generated along p
for State s ∈ SuccessorStates(p) do

. Get Sym_Ops and All_Ops
Num_all_ops←GetNumAllOps(s)
Num_sym_ops←GetNumSymOps(s)

. Calculate the ratio of Sym_Ops to All_Ops for state s
Sym_Ratio←Num_sym_ops/Num_all_ops

. Update Cumul_Ratio along the explored path
Cumul_Ratio← Cumul_Ratio + Sym_Ratio

. Compute DC(s) for the considered state s
DC(s)← 1− (Cumul_Ratio/T )
T + +

end for
end for

of all m states. This bounds its value between 0.0 and
1.0, and is given as follows:

{Pprob(sx) = DC(sx)
m∑

i=1
DC(si)

,m= |{AllCurrentStates}|} (7)

Algorithmic Approach to DC(s). In order to
derive DC(s), Forecast uses Algorithm 1.
Cumul_Ratio is the cumulative ratio of symbolic
operations to all operations, and T is the total state
transitions in terms of basic blocks. For each explored
path p in the memory image, DC(s) is calculated for
every state s generated and executed along the path p.

3.2 DC(s)-Guided Symbolic Analysis
Forecast uses DC(s) to optimize symbolic execution
multi-path exploration by bounding loops, concretizing
addresses for symbolic control flow, and pruning paths.
Neglecting these parameters impacts soundness and
performance [27], [28]. State-of-the-art tools [6], [22],
[23] rely on hard-coded thresholds to balance the
trade-off between coverage and soundness. These
techniques mostly focus on finding bugs in
non-malicious code. Choosing an informed threshold is
application-specific and may require a manual
investigation. Yet, unlike finding bugs, malware employ
adversarial means to vary these issues at run-time,
hence a hard-coded or manual threshold will be limiting.
However, by modeling the changing concrete state of an
exploration, Forecast can dynamically adapt these
(otherwise application-specific) thresholds at run-time.
DC(s) embodies this automated adaptability to

optimize exploration. We evaluate these features against
adversarial symbolic analysis tactics in §4.

Adapting Loop Bounds. Forecast optimizes
loops by forcing a bound only when DC(s) indicates a
heavy symbolic state over time (specifically, when
DC(s) drops below 0.10 after 10 state transitions). This
optimization precisely measures how much a loop is
affecting a state to decide when to bound it. We
observed that unlike harmless loops, explosion-causing
loops converge DC(s) to 0.10 after two or more
transitions.

On-Demand State Pruning. When performance is
overwhelmed by heavy state symbolism, Forecast
prioritizes states for pruning by selecting the worst
performers. Under DC(s), this selection is trivial since
every state has a DC(s) score, which is used to prune
states with heavy symbolic footprints. In §4.6, we found
on-demand pruning drove Forecast toward more
concrete paths than tools which prune paths via a
hard-coded threshold — leading to Forecast
exploring deeper in selected paths.

Stack Backtrace Analysis. False successor paths
often arise in symbolic analysis. Forecast examines
the return addresses on the stack in a memory image to
identify false paths — function returns which do not
conform to previously established targets in the call
stack. Specifically, the stack backtrace enables
Forecast to verify flow-correctness by comparing the
stack pointer and return addresses in the backtrace with
that computed after executing a return instruction.

Address Concretization. Forecast uses the
memory image data space to concretize symbolic
indices to a tractable range. In addition, we observed
that false states perform illegal indices accesses (indices
beyond the mapped code/data space of a process).
Forecast uses this indicator to prune such states.
Further, Forecast’s analysis is transparent to address
space layout randomization (ASLR) because ASLR is
done at process load, before execution.

Library Function Simulation. Forecast
analyzes the libraries present in the memory image to
identify the exported functions. Identified functions are
hooked to redirect the symbolic exploration to a
simulated procedure. Forecast also handles dynamic
library loading by calls to the LoadLibrary functions. If
a library is loaded during symbolic exploration,
Forecast creates a new section in memory for the
loaded library. Once a call to GetProcAddress is
reached, a new address is allocated in the library’s
memory section and hooked, then this address is
returned. Any calls made to this address will be
redirected to the correct simulated procedure.
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3.3 Forecasting Malware Capabilities

To characterize high-level capabilities, we focus on
contextualizing a malware’s API functionality by
analyzing the constraints on their input and output
parameters. Forecast analyzes the symbolic
constraints on the input and output parameters of each
API to “connect the dots” between APIs. Analyzing
APIs used by malware is useful for identifying its
capabilities because a malware’s behavior stems from
its API calls and data flow [11]–[13], [29]. Specifying a
unique trace involves identifying the first (source) and
last (sink) API in the sequence. While analyzing API
data flow is not novel [30], previous work relies on
dynamic taint-tracking [11], [14], [29], which can hardly
be applied here. To tackle this, we leverage a constraint
matching technique introduced by [5] to model
malware’s decision making. Our approach is based on
the formulation that for a given API trace to embody a
capability, the path constraints on the input of each
succeeding API starting from the sink, can be matched
to the output constraints of at least one preceding API.
When a sink is encountered, Forecast performs a

call-based backward slice to record all call instructions
such that, for each instruction, there is a data flow from
at least one of its operands to the input argument of
the sink. If the extracted slice includes a corresponding
source, Forecast proceeds to match the constraints on
the input of every succeeding call, starting from the
sink, to the output of any preceding call. Note that
traditional system call/API tracing often misses
malware capabilities due to a lack of contextual
connection between observed APIs. Instead, Forecast
uses the constraints on the API parameters in this
call-based backward slice to precisely connect the data
flow between the APIs to infer capabilities. Put simply:
The constraints encapsulate only the relevant data flow
between sources and sinks.
Figure 3 illustrates this analysis on AveMaria, a

Trojan that steals Firefox cookie files. AveMaria infects
by replacing the code of Svcshost, a Windows service,
with its own code, a code injection capability known as
process hollowing. AveMaria also takes screenshots to
spy on the user’s screen. The shaded boxes are the
relevant APIs in the trace and their key arguments. The
dotted line matches the input constraints on an
argument of a latter API to the output constraints of at
least one preceding API. The analysis starts when a
sink is identified (e.g., SetThreadContext for AveMaria’s
Code Injection) and the entire trace is recovered by a
call-based backward slice. The numbers, 1, 2, etc., show
the constraint matching steps, starting from the sink
and walking backwards to a source. In AveMaria’s File
Exfiltration, the constraints on the input file (buf_3)

Figure 3: API Constraints Analysis of AveMaria.

exfiltrated by send are matched with the constraints on
buf_2, an output argument of ReadFile. Next, the
constraints on the file handle (hFile) of ReadFile are
matched with the constraints on the output of OpenFile.
When these constraints are matched from a send to
socket, Forecast reports a File Exfiltration.

Capability Analysis Plugin. A plugin specifies
different ways that a given capability is to be
identified.2 It lists one or more API sequences, their key
arguments, and how constraints on their input and
output parameters connect each other. We develop
plugins to identify 7 specific malware capabilities.
Analysts can easily extend these plugins to specify
additional capabilities by reviewing the API
documentation of the target operating system. Next, we
describe each capability, showing how a plugin can
specify them.

1. File Exfiltration. Malware sends stolen
information from an infected host by uploading a file to
its drop site. This is done by using OpenFile and
ReadFile APIs to copy data into a buffer followed by
use of the send or HttpSendRequest network API.3 The
plugin matches the constraints on the buffer written to
by ReadFile with the buffer of data sent by send or
HttpSendRequest. Figure 3 shows Forecast’s analysis
of AveMaria’s file exfiltration.

2. Code Injection. Malware injects its code into a
victim process to run under the target process ID. This
is done by the OpenProcess or CreateProcess APIs,
followed by WriteProcessMemory (process hollowing)
and/or CreateRemoteThread (PE or DLL Injection).

2Several plugins could be defined for one capability to capture
different possible ways that malware exhibit that capability.

3We refer to APIs with multiple variants (A, ExA, W, and
ExW ) by the base API name but our plugins cover all variants.
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The plugin matches the input constraints on the process
handle used by these APIs. Figure 3 shows Forecast’s
analysis of AveMaria’s code injection.

3. Dropper. Malware writes a file to disk and changes
its attributes for execution. The plugin matches the
constraints on the file handle returned by CreateFile
with the file handle input passed to WriteFile, as well
as the file name passed to CreateFile, SetFileAttributes,
and CreateProcess.

4. Key & Screen Spying. Malware records
keystrokes and screenshots of a user’s computer. To
detect key spying, the plugin matches the constraints
on the window handle passed to RegisterHotKey and
GetMessage and checks if WH_KEYBOARD was
passed to SetWindowsHook to monitor keystrokes. For
screenshots, the plugin checks if a device context handle
returned by GetDC or GetWindowDC is passed to
CreateCompatibleBitmap. Figure 3 shows this analysis
for AveMaria’s screen spying.

5. Persistence. Malware make registry entries to
maintain persistence across reboots. The persistence
plugin compares the constraints on the registry key
handle returned by RegCreateKey or RegSetValue with
the input to RegSetValue. We also specify the keys and
subkeys that malware commonly use with these APIs,
such as HKLM, HKCU, Run, and ControlSet.

6. Anti-analysis. Malware check for analysis
environments and tools to determine if it should hide its
behavior. This can be done by checking for debuggers
with OutputDebugString, IsDebuggerPresent, or
CheckRemoteDebuggerPresent. VM checks look for
running services by using CreateToolhelp32Snapshot or
EnumProcesses or invoking cpuid to check for virtual
CPUs. The plugin checks for usage of these APIs.

7. C&C Communication. This plugin checks the
arguments of socket (af is an IP address),
InternetOpenUrl (lpszUrl is a domain), and
IWinHttpRequest::Open (lpszServerName is a domain or
IP) to determine which servers are contacted. For
domains that are represented by constant values or
stored in memory (e.g., obtained from an external
source such as file or socket), the plugin can successfully
extract the domain. If the domain is from an external
source and had not be stored in memory at the time of
the memory capture, the plugin is unable to determine
its concrete value. In the case of domains generated
algorithmically, Forecast builds constraints on the
bytes of the domain, seeds Z3 with the concrete
execution data, and attempts to solve the constraints.
To develop these plugins, we manually analyzed 50

samples and compiled many relevant API traces and
their key arguments, similar to what an analyst would

do. Since there are a finite number of ways malware can
exhibit a given capability, we can expect to model most
of those methods. In doing this, we observed that there
could be variations in API traces for the same
capability, but the key APIs are always present. In
addition, some APIs perform the same function, and
hence can be interchanged. For example,
WriteV irtualMemory can be interchanged for
WriteProcessMemory in the process hollowing
example in Figure 3. Furthermore, this approach is
resilient to noisy API calls that malware authors may
mix into their capability function. We provide
additional details about the constraints for each plugin
in Appendix A Table 7.

Capability Forecasts Percentages. The paths
where capabilities are found are known as capability
paths or CP aths. Forecast considers these paths to
derive forecast percentages for discovered capabilities.
For each capability cx along a path x, Forecast
reports a forecast Ccast(cx) as a percentage. Ccast(cx)
is derived from path probabilities of all CP aths, and
measures the probability that cx will be executed
relative to other capabilities. Let the cardinality of
Cpaths be m. A forecast is given as follows:

{∀i ∈ CP aths : Ccast(cx) =
Pprob(x)

m∑
i=1

Pprob(i)
×100} (8)

4 Evaluation

Forecast builds upon several angr [22] features,
including exploration techniques, SimProcedures, and
state plugins. Our focus is on Windows malware since
they are most prevalent, but our methodology could be
ported to other platforms.

Experiment Setup. Our experiment mimics a
real-world deployment where a host-based security tool
captures a memory image of malware once an IDS
detects malicious network activity. Our testbed is
comprised of (1) an Ubuntu 14.04 machine (with 40GB
RAM and 4-core 2.7GHz cpu) running Forecast, (2) a
Windows 7 machine executing malware, and (3) an IDS
system running SNORT. We collected the alert network
signatures of each malware to configure SNORT. IDS
alerts during the malware’s execution trigger the
capture of a process memory image4 and sends it to
Forecast. We profiled all captured memory images
and observed that 83% were taken while the malware
was polling on I/O, such as a network socket.

4WinDBG memory capture also collects pages swapped to disk.
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Malware
C&C Comm File Code Dropper Key & Screen Persistence Anti-analysis

O
F

P

O
F

N

Exfiltration Injection Spy
PF OM OF PF OM OF PF OM OF PF OM OF PF OM OF PF OM OF PF OM OF

Bokbok 38% 2 2 5% 3 3 57% 1 1 - - - - 0 0
AcridRain 23% 3 3 19% 4 4 - 28% 2 2 - 30% 1 1 - 0 0
AthenaGo - 11% 4 4 - 22% 3 2 - 33% 2 3 34% 1 1 2 0
Rokrat 30% 1 1 26% 2 2 22% 3 3 - 17% 4 4 - 15% 5 5 0 0

AdamLocker 22% 3 3 0 4 ∅ 45% 1 1 - - 33% 2 2 - 0 1
Marap - 46% 3 3 40% 1 1 - 14% 2 2 - - 0 0
ATI - - - 41% 2 2 - 42% 1 1 17% 3 3 0 0

TeslaAgent 11% 4 4 14% 3 3 32% 1 1 - 13% 2 3 30% 3 3 - 0 0
Andromeda 25% 2 2 - 14% 3 3 - - 61% 1 1 - 0 0
AveMaria 28% 3 4 29% 2 2 28% 4 3 - 25% 1 1 0 3 ∅ - 2 1

Aveo 22% 3 3 - - 40% 1 1 - 38% 2 2 0 4 ∅ 0 1
7Honest - 16% 3 3 51% 1 1 11% 4 4 - 22% 2 2 - 0 0
Abaddon - 26% 2 2 - - - 84% 1 1 - 0 0
AVCrpyt 51% 1 1 - - - - 19% 3 3 30% 2 2 0 0

Table 1: Capability Forecasts of 14 Select Recent Samples. PF : Forecast percentage, OM : Ground truth manual
ordering, OF : Forecast ordering, OF P : Ordering false positive, OF N : Ordering false negative.

4.1 Evaluating Capability Forecasts
Table 1 presents the capability forecasts of 14 recent
samples5 we manually collected ground truth for.
Forecast output 49 distinct capability forecasts.
Manual analysis validated 45 of them; we found 4 false
positives (FP) and 3 false negatives (FN), with an
accuracy of 86.5%. FPs were due to over-approximating
symbolic constraints when simulating undocumented
APIs such as RtlCreateUserThread. The FNs were due
to rare unresolved symbolic targets.

Ground Truth. Validating each forecast involves 2
checks: (1) the presence or absence of the identified
capability, and (2) the accuracy of the forecast
percentage. For ground truth for the presence or
absence of a capability, we leveraged malware reports
from security vendors [31], [32] and our own manual
analysis. We also used the MITRE ATT&CK
Framework [33] for our initial ground truth mappings.
To validate our ground truth forecast percentages,

(i.e.rank each outcome according to the “difficulty” or
“constraints required” of arriving at an outcome) we
modeled the difficulty metric of executing capabilities
from the memory image capture point based on the
number of branch constraints to reach a given
capability. We can obtain this metric via manual
analysis of the memory image since we know the
addresses of the individual capabilities. Using Bokbot as
an example, Table 1 shows its 3 capabilities: Code
Injection, C&C Communication, and File Exfiltration.
For these, Forecast reports forecast percentages of
57%, 38%, and 5% respectively (listed in the Ccast

column of Table 1). Based on manual analysis of its
memory image, the number of branch constraints to
reach these capabilities are 166, 195, and 257,

5Their hashes are presented in Table 8 in Appendix A.

respectively. Thus, Code Injection is less difficult to
reach and hence has the highest forecast.
Next, we validate capability ordering. We assign an

increasing number, starting at 1, to each capability
identified by manual checking (defined as OM ) and
ordered by increasing difficulty. We assign an increasing
number to each capability identified by Forecast
(OF ) up to the number of identified capabilities. For
Bokbot, both manual checking and Forecast report an
ordering of 1, 2, and 3 for Code Injection, C&C
Communication, and File Exfiltration respectively.

As shown in Table 1, because Forecast’s forecast for
Bokbok’s Code Injection is the highest, (i.e., 57%), Code
Injection’s ordering or OF is 1. Similarly, the ordering
by manual checking or OM is also 1, which validates
Forecast’s forecast for Bokbot’s Code Injection. In
another example, Forecast’s prediction for AthenaGo’s
Dropper is 22%, which is the second highest forecast (i.e.,
OF is 2). However, manual checking shows Persistence as
the second highest instead, resulting in FP for AthenaGo
(listed in the OF P column of Table 1). Forecast missed
Aveo’s Anti-analysis capability, resulting in a FN (listed
in the OF N column), and a forecast of 0 (Ccast column).
Overall, Persistence reported the highest forecast

percentages, as high as 84% for Abaddon. We found
that most malware persist via infecting the registry.
Conversely, File Exfiltration reports the lowest forecasts,
as low as 5% for Bokbok. Reasonably, File Exfiltration
can be seen as an “end goal” capability, which malware
deploy in deep code under several constraints. By
integrating capability analysis plugins, Forecast was
able to automatically identify them.
C&C Communication. Table 1 shows 7 C&C
domains identified with 1 FP. We focused on
WinINET’s APIs such as InternetOpenUrl and socket.
In particular, we concretized their domain and IP
address arguments. Forecast revealed Rokrat and
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Capabilities
Malware Packer Paths Steps Const. Leaves Time (s) DC(s) C&C Exfil. Inject Drop Spy Persist Anti-Analy. FP FN

Packed
From
Table 1

Marap UPX
Type-I

227 465.95 25.74 3.01 97.39 0.94 3 3 3 0 0
AVCrypt 59 184.69 23.53 2.00 27.91 0.84 3 3 3 0 0
ATI 115 179.44 19.89 3.17 56.90 0.83 3 3 3 0 0

Stress
Test

Packers

RokRat ASPack
Type-III

595 265.68 14.05 1.99 143.54 0.93 3 7 3 3 3 0 1
AcridRain 1410 330.39 26.82 2.84 247.47 0.88 3 3 3 7 0 1
AthenaGo 677 371.39 26.48 2.03 193.44 0.92 3 3 3 3 0 0
RokRat Armadillo

Type-VI

732 56.39 18.19 2.96 139.31 0.68 3 3 7 3 3 0 1
AcridRain 338 226.30 23.70 3.42 93.34 0.84 3 3 3 7 0 1
AthenaGo 701 55.21 18.17 2.66 107.42 0.67 3 7 3 3 0 1

Table 2: Packed malware evaluation results based on packer taxonomy found in Ugarte-Pedrero et al. [34].

AVCrypt’s usage of dropbox.com and TOR
(bxp44w3qwwrmuupc.onion), respectively. TeslaAgent
uses a hardcoded IP address (45.77.35.239), and a gmail
account (mylogbox3h@gmail.com) to communicate
externally. Aveo communicates with a .it domain,
vacanzaimmobiliare.it. We found that this server is
hosting a vacation website and is likely compromised.

Code Injection. Forecast reports 8 Code
Injection with 1 FP. Explorer and Svchost are the most
common Windows programs injected into. 7Honest,
Bokbot, and AveMaria hollows into Svchost by invoking
CreateProcess with a CREATE_SUSPENDED flag, and
thereafter swaps the code pages with
WriteProcessMemory and SetThreadContext. TeslaAgent
and Andromeda inject into Explorer using the
VirtualAlloc and WriteProcessMemory API sequences.

Dropper. Forecast reports 5 Dropper forecasts
with no FP and FN. 7Honest and AthenaGo drop
additional files in the AppData and ProgramData
directories and manipulate their permissions using
SetFileAtrributes. AcridRain drops a WinDDecode.exe
executable in AppData. We determined it was a custom
decoder for its C&C. Aveo drops .dat executables in
system32.

Key & Screen Spying. We focused on detecting
keyloggers and screen captures based on the Key Hooks
and GDI API toolkit. Forecast reported 4 Key &
Screen spying forecasts with 1 FP. RokRat and
TeslaAgent used GetAsyncKeyState and RegisterHotKey
API to obtain key presses. AveMaria invoked screen
capture using a sequence of GetDeskstopWindow,
GetWindowDC, and CreateCompatibleBitmap.

Anti-Analysis. Forecast reports 4 Anti-analysis
forecasts with 1 FN. RokRat and AthenaGo performed
network checks via InternetCheckConnectionA. AVcrypt
uses IsDebuggerPresent, OutputDebugString, and
CheckRemoteDebuggerPresent to check for debuggers.
To check for VM, ATI issues cpuid calls to obtain
hardware platform information.

4.2 Packed Malware

We evaluated Forecast’s robustness against packers
using the taxonomy proposed by Ugarte-Pedrero et
al. [34]. In fact, 3 of the 14 samples from Table 1 are
packed by UPX, which is a Type-I packer. We include
those three samples in our packer robustness evaluation
as a reference, as shown in Table 2. Our evaluation also
looked at three additional families using two different
types of packers, namely ASPack (Type-III) and
Armadillo (Type-VI), giving us a total of 9 samples.

Type-I through Type-IV packers fully unpack the
malware code in memory before executing the malicious
code [34]. For completeness, we evaluate Forecast
against ASPack, a Type-III packer, where layered
unpacking routines are not sequential, leaving junk code
and data in memory from earlier layers. In Table 2,
Forecast explores an average of 894 paths per sample
with a high final DC(s) (mostly concrete). Additionally,
Forecast identifies almost every capability found in
Table 1, except for exfiltration (Exfil.) and persistence
(Presist) capabilities for RokRat and AcridRain,
respectively. We mark those missed capabilities as
false-negatives (FN) in Table 2.

Type-V and VI packers unpack malicious code
incrementally using different memory frames. We
evaluate Forecast against Armadillo with
CopyMem-II protection, which incrementally unpacks
and executes code at a memory-page granularity.
Forecast explores an average of 590 paths per sample
with an average of 0.73 for the final DC(s), which is
lower than Type-I and Type-III packers. Moreover,
Forecast identifies all the capabilities in Table 1
except code injection (Inject), persistence (Persist), and
dropper (Drop) capabilities found in RokRat,
AcridRain, and AthenaGo, respectively. These results
empirically show the effect of incremental unpacking on
Forecast’s capability to analyze malware, which is
rooted in the memory artifacts that are visible during
malware capture. We discuss these limitations in §6.
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Malware Family All Samples browsefox coinminer xtrat autoit expiro bifrose darkkomet rebhip dprotect llac delf
Total Samples 6,727 200 161 57 161 3428 69 163 80 398 68 65
C&C URL 30.5% 51% 47% 39% 32% 17%
File Exfiltration 11.3% 12% 17% 8%
Code Injection 32.7% 25% 44%
Dropper 41.0% 37% 23% 23% 11% 44% 33% 37% 26% 10%
Persistence 55.2% 52% 60% 67% 61% 63% 57% 46%
Key&Screen Spy 24.4% 40% 33%
Anti-analysis 29.4% 29% 34% 39%
Avg. Explore time(s) 291 218 234 196 124 310 128 326 285 227 134 420
Avg. APIs per path 26 21 18 12 9 17 29 13 45 28 13 11
Avg. States generated 1638 1196 1267 3450 950 1471 4601 670 897 1136 823 1568
DC(s) of final states 0.21 0.34 0.21 0.29 0.39 0.28 0.18 0.43 0.43 0.32 0.41 0.31

Table 4: Average Capability Forecasts and Metrics, featuring the 11 most prevalent malware families.

4.3 Tactics To Subvert Forecast

Category Samples Paths Steps C/P Leaves Flags
No Hash 10 2.00 21.50 3.00 16.00 100%
Hash-Guarded 10 74.70 45.15 19.00 3.40 100%
Tigress 2311 4.02 58.65 8.47 3.84 97%

Table 3: Averaged results of symbolic obfuscation
evaluation. C/P denotes constraints per path.

Malware authors who are aware of Forecast may
try to adapt advanced tactics to subvert our capability
exploration. To evaluate Forecast against targeted
attacks, we follow the set of obfuscation benchmarks
proposed by Banescu et al [35], [36]. These anti-analysis
benchmarks are broken into two sets, a set of 10
hash-guarded programs that simulate license checking
(Hash-Guarded) and a set of 2,311 Tigress-obfuscated
programs (Tigress). Table 3 presents the results for
three experiments, namely baseline (No Hash),
Hash-Guarded, and Tigress. For the Hash-Guarded
programs we created a Forecast plugin that triggers
when the license check is correct (captured Flag). For
the No Hash programs, Forecast found the flag and
explored 2 paths with an average of 21.5 steps per path,
3 constraints, and 16 leaf nodes per constraint AST.

For the Hash-Guarded programs, Forecast found all
flags and explored an average of 74.7 paths, with 45.15
steps and 19 constraints per path, and 3.4 leaves per
constraint. For the Tigress obfuscated programs, the
code performs various transformations on the input and
compares the derived value against an expected value
that represents the correct license key.6 The results show
that 97% of the flags were found and an average of
4.02 paths were explored with an average of 58.65 steps
per path, 8.47 constraints per path, and 3.84 leaves per
constraint. These results empirically demonstrate that
Forecast is resilient against adversarial obfuscation
attacks targeting symbolic execution.

6We excluded Tigress programs which crashed or did not print
the flag during a natural execution with the correct argument.

4.4 Large-Scale Analysis
We show that Forecast is effective when applied to a
larger set of memory images from 6,727 malware
samples (covering 274 different malware families).
Table 4 summarizes Forecast’s capability forecasts for
the 6,727 samples and highlights metrics for the top 11
most prevalent malware families in our dataset. The
highest capability forecasts were recorded for
Persistence and Dropper. We observed that over 70% of
all 6,727 samples have Dropper and Persistence
capabilities. When averaged, Persistence reports 55.2%
overall forecast, peaking at 67% for the Bifrose family.
Our experiment revealed that the Bifrose family enters
several registry Run keys in both the HKLM* and HKCU*
registry directories – an aggressive means to force
persistence across reboots, compared to other families.
Bifrose samples also drop a .dat executable file in
Windows\System32 and connect to a no-ip.com
domain C&C. Dropper capability reported 41.0%
overall, peaking at 44% for the expiro family. The lowest
forecasts were File Exfiltration, with 11.3% overall.
We observed fairly low variance between the highs

and lows of forecasts within each family. Digging deeper,
this is due to samples in the same family reusing the
same features (e.g., dropper filenames). Samples in the
Browsefox adware family drop an executable with a
consistent file name format of “<random>Expance.exe”
in ProgramData directory. Our investigation found that
it installs extensions to browsers to display ads, earning
the attacker ad revenue. The Xtrat family of remote
access trojans displays similar patterns of C&C domain
names, namely <random>to.org. Concrete examples are
zapto.org and hopto.org.

Exploration Metrics. Table 4 reveals interesting
observations about the metrics reported by each
malware family. The average exploration time for one
memory image is 291 seconds, which shows that
Forecast is efficient as an offline investigation tool.
Forecast revealed an average of 26 unique APIs per
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memory image and generated 1,638 states on average
per sample. The Bifrose family reported the largest
number of states per sample (4,601), while Darkkomet
generated the lowest (670 states per sample).
The average DC(s) for end states was 0.21, which

indicates that states toward the end were more symbolic
than concrete. Bifrose reported the lowest DC(s) of
0.18 indicating a very symbolic ending. This was the
general observation for most C&C-based malware since
simulating socket calls introduces more symbolic data,
causing DC(s) to drop. Darkkomet and Rebhip tied for
the highest DC(s) with 0.43. This confirms the
correlation between DC(s) and cumulative states
coverage. Samples in the Delf family reported the
maximum exploration time (420 seconds on average),
which explains their high average states (1568).

4.5 Pre-Staged Concrete Input
Recall that when no concrete input data exists, pure
symbolic analysis will explore all paths. The DC(s)
model assumes that following paths that involve
pre-staged concrete data in the memory image focuses
Forecast on the most urgent payloads. We
empirically evaluated this assumption with
controlled-experiments on 2 malicious and 3 benign
programs: (1) LokiRAT, a remote access trojan, (2)
xTBot, an IRC-based malware, (3) netstat, (4)
ipconfig, and (5) arp. These were chosen because
their source code is publicly available and their
behavior for concrete inputs can be determined.7 We
analyzed their source code and compiled binaries to
establish the ground truth set of paths that selected
concrete inputs will cause the program to take. For
LokiRAT and xTBot, we determined all specific paths
that the malware could take when it receives certain
commands from its C&C server. For netstat,
ipconfig, and arp, we determined all specific paths
that the programs could take when executed with a set
of command-line flags. Figure 4 illustrates an example.
Table 5 shows these programs and each of the

concrete data we investigated. For netstat, ipconfig,
and arp, we executed each program with the
command-line flags shown in Table 5 and took a
memory image when main was called to ensure the
flags exist in the memory image as concrete data. For
these experiments, we obtained 9 memory images (3
command-line flags for each of the 3 programs). For
LokiRAT and xTBot, we executed each sample, injected
each selected C&C command, and captured memory
images as soon as they received each C&C command (6
in total). The intuition here is that Forecast should
produce the same paths as each ground truth set for the
corresponding memory images.

7Forecast did not have access to the ground truth.

Figure 4: LokiRAT ground truth. PT RUT H−regnewkey,
PT RUT H−message, and PT RUT H−rename represent the
ground truth set of paths for each LokiRAT C&C
command (regnewkey, message, rename).

Malware Ground Truth Forecast Results
C&C Cmds Paths Paths TP FP FN Acc(%)

LokiRAT
regnewkey 4 5 4 1 0 80

message 4 4 4 0 0 100
rename 2 2 2 0 0 100

XTBot
.ntstats 1 1 1 0 0 100
.netinfo 2 2 2 0 0 100
.sysinfo 28 30 27 2 1 90.0

Benign Argument Paths Paths TP FP FN Acc(%)

netstat
-a 3 3 3 0 0 100
-e 3 3 3 0 0 100
-r 2 2 2 0 0 100

ipconfig
-release 4 4 4 0 0 100
-renew 6 5 5 0 1 83.3
-no-flag 19 18 16 2 1 84.2

arp
-a 6 6 6 0 0 100

-d 10.1.1.1 8 7 7 0 1 87.5
-s :cf:b8:20 11 12 10 1 1 83.3

Table 5: Exploration Based on Pre-Staged Input.

Table 5 shows that, for the malware, Forecast
discovered 40 out of 41 ground truth paths, with 3 FP
and 1 FN, giving an accuracy of 95.0%. For the benign
programs, Forecast discovered 56 out of 62 ground
truth paths, with 3 FP and 4 FN, giving an accuracy of
93.1%. We found that the FP results were caused by
short paths that were pruned when they accessed illegal
memory. FNs were caused by symbolic IP values due to
unconstrained jump targets. Overall, Forecast
attained an accuracy of 94.0%. This shows that
Forecast’s exploration of memory images using
pre-staged inputs is accurate.

4.6 Comparing Existing Techniques
We empirically compared Forecast with S2E [6],
angr [22], and Triton [23]. We found that Forecast
outperforms them at identifying malware capabilities
based on the coverage of capability paths (i.e. code
paths where at least one capability is found). Since they
cannot take a memory image as input, with the
exception of angr, we provided the malware binary and
configured them to start from an equivalent IP as
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Forecast Data-Guided 877 32 28 301 12488
angr [22] Pure Symbolic 1292 11 521 236 14567
S2E [6] Concolic 602 7 57 98 10007
Triton [23] Concolic 229 3 N/A 522 4309

Table 6: Forecast Compared to Existing Techniques.
Forecast. We used 50 samples for this experiment.8

As shown in Table 6, Forecast identified more than
twice the capabilities compared to angr, S2E, and
Triton. Forecast explored as many as 877 paths per
sample on average. By leveraging prior execution state
to optimize paths, only 28 paths were terminated due
to path explosion compared to 521 by angr and 57 by
S2E. Although angr explored the most paths (1292), it
terminated 521 due to path explosion. We observed that
angr could not concretize paths when faced with early
symbolic control flow, causing state explosion. The
exploration time for angr was relatively low (236s)
because many paths quickly became unconstrained and
terminated. Forecast reported a higher runtime of
301s due to the overhead of computing probability
scores for each state.
S2E requires symbolic variables to be manually

induced for multi-path exploration. When we initially
tested S2E with malware, we traced only a single path.
However, to enable S2E to explore multiple paths, we
symbolized the arguments of the malware’s local
functions and only traced paths that originated from
the malware code. This led to an exploration of 602
paths, where 57 became unconstrained and terminated.
S2E had the fastest average runtime (98s), because it
executes code natively on the CPU. Triton uses a
per-input iterative approach to code exploration, hence
the path explosion metric is not applicable. To trace
multiple paths with Triton, we manually pushed new
constraints to each path predicate, but Triton was
heavily hindered by input requirements to explore new
paths. Triton traced 229 paths on average, 3 of which
identified capabilities. Due to its iterative nature and
instruction-level emulation, it incurred the highest
runtime of 522 seconds.

5 Related Work
Prior work uses symbolic execution for various
applications including test case generation [8]–[10], [27],
[37]–[40], vulnerability detection [9], [41], [42], and
enhancing dynamic malware analysis [3], [5], [43], but
often relies on simplistic heuristics to optimize symbolic
execution. FuzzBall [44] initializes the program states to

8Hashes and capability addresses are in Table 9 in Appendix A.

concretize constraints, while MAYHEM [27] applies
on-line and off-line concolic execution to manage path
exploration. However, Forecast reduces path
explosion by using the DC(s) framework to identify
capability-relevant paths. Additionally, Forecast does
not require an intact binary file or prior knowledge of a
program’s input and environment, which avoids
restrictive assumptions for symbolic execution.

For malware applications, prior works use full-system
emulation [4], dynamic analysis [5], [45], and Win API
simulation [46] to identify malware capabilities.
Yadegari et al. [47] study the robustness of symbolic
analysis techniques against malware obfuscation. In
contrast, Forecast is a post-detection approach that
combines both symbolic analysis and memory forensics
to identify staged malware capabilities. Prior work on
memory forensics focuses on kernel objects [48], [49],
access patterns to kernel objects [50]–[54], and dynamic
memory traces [55], [56] to detect and remediate rootkit
malware. DSCRETE [57] leverages memory image code
reuse for interpreting single data structures. Similarly,
for mobile security, prior works [58]–[61] analyze a
mobile application’s memory to recover artifacts related
to recent activities. However, Forecast relies on
memory artifacts to contextualize malware behavior
through symbolic analysis and surgically analyzes a
single target malicious process.
Provenance-based investigation techniques are also

related to Forecast. NoDoze [62] and Hassan et
al. [63] utilize Windows and Linux system events to
prioritize alerts through a network diffusion approach
using temporal ordering. Similarly, HOLMES [64]
correlates suspicious events by examining information
flows and TARDIS [65] identifies compromised websites
through a spatial-temporal approach to present attack
tactics for analysts. Attack2Vec [66] uses system event
embedding to derive emerging attack tactics.
Forecast uses the DC(s) model to predict in-progress
malware capabilities using a similar network diffusion
approach [62]–[64] but instead identifies relevant paths
based on the execution context of a malware.

6 Limitations and Discussion

Subverting Symbolic Analysis. An adversary may
target the symbolic execution component of Forecast
by exploiting path explosion, path divergence, and
constructing complex constraints. In §4.3, we turned to
the published literature on symbolic analysis
benchmarks [35] and found that Forecast is robust
against these attacks. However, we acknowledge that a
novel attack, not considered in the literature, may
subvert Forecast’s results.
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Subverting Memory Artifacts. An adversary may
target memory acquisition or memory artifacts to
subvert Forecast. The memory acquisition depends
on the IDS, which Forecast has no control over. It is
reasonable to assume that the IDS will detect and
capture a malware while the malware is executing
malicious routines (which produced the detected
signature). To tamper with memory artifacts, an
adversary can obfuscate code segments, use a
non-standard stack layout, or insert junk code/data.
Forecast was shown to be resilient to junk code/data
produced by Type-III packers in §4.2. If Forecast is
affected by an attack that subverts code analysis,
Forecast could be extended to handle specific
memory manipulation attacks by porting IDA
microcodes to flatten obfuscated code structures [67].

Virtualization-Based (VM) Packing. Generally,
like any symbolic exploration framework, Forecast
cannot explore capabilities in packed code unless it is
unpacked. As our evaluation in §4.2 shows, Forecast
can handle Type-I, Type-III, and Type-VI packers as
outlined in Ugarte-Pedrero et al. [34]. Some packers use
virtualization to convert programs into bytecode and
use an interpreter to run the bytecode. Due to the
complexity of virtualization, Forecast cannot handle
such techniques, which account for less than 2% of
packed malware [34].

Adversarial Aware Attacks. An adversary that is
aware of Forecast can influence the analysis via two
factors: memory frame replacement and pointer
obfuscation. First, memory frame replacement can
subvert Forecast for specific samples using Armadillo
with CopyMem-II protection due to the iterative
unpacking and execution sequence. This unpacks code
at a memory frame-level granularity, which limits the
visibility of the malicious code to the most recent
unpacked memory frame. This artifact is evident from
our evaluation in Table 2. Second, pointer obfuscation
creates additional overhead for the symbolic execution
engine, which drops the degree of concreteness (DC(s))
metric. An attacker can heavily utilize pointer
obfuscation by relying on a unique seed in memory to
deobfuscate pointers.
Heavy obfuscation of memory artifacts can and does

affect the performance and stability of the malware,
which may not be in the favor of the malware operator.
Not surprisingly, Ugarte-Pedrero et al. [34] finds such
heavy obfuscation in only 1.8% of in-the-wild malware.
Finally, we emphasize that the quality of the memory
capture is dependent on the detection tool, independent
of Forecast. Forecast is a post-detection approach
that relies on a forensic memory capture to perform
capability prediction.

7 Conclusion

Forecast overcomes the high cognitive burden on an
analyst by forecasting future malware capabilities.
Forecast integrates memory forensics and symbolic
analysis in a feedback loop to efficiently explore
malware with context. Our evaluation has shown that
Forecast produces accurate forecasts of capabilities.
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A Appendix: Additional Technical Material

Capability Plugin Tracked APIs (Reverse Order) Tracked Parameters Description

File Exfiltration

Send(socket, buf)
Socket(socket)
ReadFile(hFile, buf)
OpenFile(lpFname)

socket <- Socket(socket)
buf <- ReadFile(hFile, buf)
hFile <- OpenFile(lpFname)

Exfiltration functionality tracks back from the Send function
by tracking Socket creation, file access (OpenFile and ReadFile),
and the parameters associated with each API.

Code Injection

SetThreadContext(pContext)
WriteProcessMemory(hProcess)
VirtualAllocEx(hProcess)
ZWUnMapViewOfSection(pHandle)
GetThreadContext(pContext)
CreateProcess(appName)

pContext <- GetThreadContext(pContext)
hProcess <- CreateProcess(appName)
pHandle <- hProcess

This code injection technique is known as process hollowing. The
plugin tracks from SetThreadContext with WriteProcessMemory,
and VirtualAllocEx to identify parameter constraints tying back
to pContext, hProcess, and pHandle.

Dropper

CreateProcess(lpApplicationName)
SetFileAttribute(lpFileName)
WriteFile (hFile)
CreateFile(lpFileName)

hFile <- CreateFile(lpFileName)
lpFileName <- lpFileName
lpApplicationName <- lpFileName

This plugin tracks code that writes a file to disk by creating a file
handle based on a filename. Then it tracks an attribute modification
that sets the property for execution. Then tracks filename and path
used in the process creation to make up the dropper capability.

Key & Screen Spy

FromHbitmap(hBitmap)
SelectObject(hDCDest)
CreateCompatibleDC(hDCSource)
CreateCompatiableBitmap(hDCSource)
GetWindowDC(Whandle)
GetDesktopWindow()

hBitmap <- CreateCompatiableBitmap(hDCSource)
hDCDest <- CreateCompatiableDC(hDCSource)
hDCSource <- GetWindowDC(Whandle)
Whandle <- GetDesktopWindow()

This plugin tracks screen capture capability by identifying a handle
to bitmap object that constraints on a handle to a device context
object. Then constraints the handle to a Windows handle object
that is created by referencing the user Window.

Persistence
GetFullPathNameA(lpFileName)
RegOpenKeyEx(lpSubKey)
RegSetValueEx(hKey, lpData)

lpData <- GetFullPathnameA(lpFileName)
hKey <- RegOpenKeyEx(lpSubKey:str-match)

This plugin tracks a persistent method that relies on registry keys.
Specifically, we track constraints on the file path value set to a key
and sub key value by matching for HKLM, HKCU,
ControlSet, and Run to the registry key handle.

Anti-Analysis

InternetGetConnectedStates
GetConnectedProfiles
GetConnectivity
InternetAttemptConnect
OutputDebugString
IsDebuggerPresentPresent
CheckRemoteDebuggerPresent
CreateToolhelp32Snapshot
EnumProcesses
cpuid (instruction)

None specified

This plugin applies no parameter constraints to identify and track
anti-analysis capability. Since Forecast assumes the memory image under
analysis is a suspicious or malicious (detected by HIDS), Forecast simply
searches for any invocation of these Windows API functions to track
anti-analysis capability.

C&C Comm.
InternetConnectA(lpszServerName)
InternetCheckConnectionA(lpszUrl)
IWinHttpRequest::Open(Url)

lpszServerName - IP/Domain regex-match
lpszUrl - IP/Domain regex-match
Url - IP/Domain regex-match

This plugin applies regex match constraint to the parameters of a
select network-based APIs to identify and track C&C communication.
Specifically, the plugin tracks internet routable and valid domain names.

Table 7: Capability identification and tracking is a modular component of Forecast. Analysts can build additional
capability plugins to help in future investigations by identifying APIs and parameter constraints that make up the
capability. The parameter constraints are tracked through data flow analysis and backward slicing.

Sample Year Reported Hash (SHA 256)
rokrat 2018 4d37f80da97845129debf3244e1f731d2c93a02519f9fdaa059f5f124cf7c26f
7honest 2016 575e6fa02a54b9e3cd5977a66d09cf0e841d6efbe59be334056cf8fe8613194a
bokbot 2019 62b7fbffd000a8d747c55260f0b867d09bc4ad19b2b657fb9ee3744c12b87257
AcridRain 2018 7b045eec693e5598b0bb83d21931e9259c8e4825c24ac3d052254e4925738b43
AthenaGo 2016 af385c983832273390bb8e72a9617e89becff2809a24a3c76646544375f21d14
AdamLocker 2016 0fb2e4bdd84c3ae8af8fb255ad4f5d093bc10544684bff739ccc985ebd4e64cb
Marap 2018 5859a21be4ca9243f6adf70779e6986f518c3748d26c427a385efcd3529d8792
Abaddon 2015 7cfc340ed0bd2af138c4b2b85c19693755a9c9ea798028d1a17d0cfcc61b5a3a
ATI 2016 b101cd29e18a515753409ae86ce68a4cedbe0d640d385eb24b9bbb69cf8186ae
TeslaAgent 2018 c2cae82e01d954e3a50feaebcd3f75de7416a851ea855d6f0e8aaac84a507ca3
Andromeda 2013 f20355d0e3689bf7e8540c6881cb5299e36c5342a3679dd54d206c4ff4f8b979
AVCrypt 2018 58c7c883785ad27434ca8c9fc20b02885c9c24e884d7f6f1c0cc2908a3e111f2
AveMaria 2018 81043261988c8d85ca005f23c14cf098552960ae4899fc95f54bcae6c5cb35f1
Aveo 2016 9dccfdd2a503ef8614189225bbbac11ee6027590c577afcaada7e042e18625e2

Table 8: Malware Samples Used In The Forecasting Evaluation (§4.1).
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Sample Hash Capture IP Capability End Address(es)
f9c6db5331051aa487b706f0616f3287a40a27606bfddc804b3c4684d4203717 0x140005057 0x140008060
59b9d061ff78c240e1e0e8135d9be482e0fe788186b6cb940f56c67798a862df 0x14000515b 0x140008152
1eed6b168c2cd7701bf3a2aa6a30cf014cae9bc6ae813ef7356c5c6bc8ad6d18 0x1400050e7 0x1400080ec
471de9132673ec513b5c7c06a4bc1f67a7e91c6c8c7def55e9e03131ac5fb400 0x40109d 0x401374, 0x77244bb4
153fb1b9cd5dabffa3d123c4ac91abae46546db7447140df7b4aa1f2d3e8f59e 0x1400010e6 0x1400010f1, 0x77994bb4
ffec8e4a80182eb507489bcabd368d42489bf1ec871542c131df04c068d01a76 0x14000221f 0x140002516, 0x78204bb4
baa0f9e799a3d46ccb04c9d4520a69e58383b2d88aad8746f9214eaa8d3a06f3 0x14000f2b1 0x140011380, 0x14000f29e
ff64690b250faa9b1902b945f543a7b4ff9560cb562c0b18f3798538cc28178c 0x14000c2ac 0x14000fa10, 0x14000c299
dc616f2f6b1856454412ea608b96d3d6d7ab719684b6d04f0a79cf9228477d4f 0x140001408 0x1400013fd, 0x140001054
f2f9696ffea5b8cf3c1bf860a3d0704033b7693199cf097367a052144b0c350f 0x14000b089 0x1400234a9, 0x77314bb4
3025bf51ac1f1571e3f49ee1836d44f0cfd9bfcf6e39731f6fea0ddde33925a1 0x1400012d4 0x140007690, 0x78714bb4
e82b6a27a1aec373983f189cd422f1eeb336f1f493db341df5d090a4946feae8 0x14000159a 0x140012987, 0x7fefef911fd,

0x77984bb4, 0x14000de82,
0x14000de5f, 0x14000de8d

51c5668f052bbfb4ca9670413a240c8214264839211119543b28f90f86504edc 0x14000136c 0x1400043b5
f055f75abb82c9500b3f2cf64f6b546105177599b718304b3fc569e932533087 0x14000be19 0x14000e360, 0x14000be06
c06b359921a385efbf8ce33bd875a797d89f88c575fe640173429ce5a10b45ae 0x140001c56 0x140002e0e, 0x77ba4bb4
54b49a2faef8b8a6b8ef9bd96a44575403025e8c422ef8817d8cba6ea0344945 0x14000ec06 0x140010bc7, 0x14000ebf3
a785bc5be1fd3e9f6997f558a4e613b973769cc43c6e7b738158354b66390d06 0x1400012b5 0x140004daa, 0x78114bb4
fee18f402375b210fc7b89e29084fb8e478d5ee0f0cdb85d4618d14abb2e5197 0x14000faa9 0x140011e80, 0x14000fa96
f85abdfa7e8931686bbbb9bb0dd2e12ca10f28b8b1b7be2890eb19023c52232a 0x1400242b8 0x1400242c3, 0x77314bb4
ec72f1af9119754195a77cd890cc9e5ee1e555e9ef89fe2e535ee3e4ce2132cf 0x140011f10 0x140016387, 0x140011efd
a5c8d9df73b2ff360d22e879b678d323bbccd81cb9e0ef45cce4aaf4e37c7f27 0x140011516 0x14001163a, 0x77644bb4
58f9504b59b40dfbff5e3093af0a39def00b449c499ef3e7c0880ac986575f76 0x14000fda9 0x140012180, 0x14000fd96
6130a8c7595f6d9abc3dba157e8bd7596b11c9903296060e52d764a8719d7b84 0x140023d5a 0x77d0a358, 0x140023156,

0x77ba4bb4, 0x77d03e18,
0x140025d80

c9b27cbdc1b4258cd4103b3847e7de9c52985289ce4bd61323d69bf9c1e2a8c0 0x1400025bc 0x14000343c, 0x77874bb4
1edfad978a9e4beb24c2f51e9cf12424d415f5e9b5292279ac47b9f650495b31 0x140001041 0x14000174e, 0x140001045,

0x77e1a358, 0x1400016a0,
0x140001437

cab869f98ba3fe1948d2b48fa76fa4767fa7f31e28f3be2b34572ab0c63f942a 0x14000f8cd 0x140011ca0, 0x14000f8ba
600845916e82b6de80f9ff1d6a0553ff98bce6f41dc6029343821f095072fcee 0x14000a6c9 0x14001bbb9, 0x77644bb4
c2bda34d3ac4844ea377aa87b115b94019b98919de7d153029865efc969fd46d 0x140002a5e 0x76f53e18, 0x140002a62
b59c3d14968a9d7d90baa0df624339aa977dc98e5de1c7f6b71bef23606db769 0x14000d20d 0x14000f1a0, 0x14000d1fa
2dbd5d77540a1470459d74906d1668ae49fb275d834976fae1f31bbe74d8e168 0x140003df6 0x140010ba0, 0x76cd4bb4
e47b4147f8a51511b087f90ae07a4d0650b17a6ca2be5a7b19ad1c3f058fb15f 0x4038db 0x406a8b, 0x7fefbb1580a,

0x405b7a, 0x405b7f, 0x406a7f
6dabcf4ce36360826b381a80a7bd34d0df6612f37528e0086009a87bbc16ee57 0x401724 0x7fefdaa99e2, 0x7fefdad811e
b1dee4864ee0d67afb4889cdb0efe1ea54e1005debeb9ef4b4541848c23750c8 0x14000b079 0x14001f7e9, 0x77984bb4
f3fb1b8bd66a67e9f5e00895fb1fee886764c1fc65def4b0104eb7408973ee40 0x140004750 0x778c3e18, 0x77644bb4
b3f91bd440d63ff0b3a28e3fc444714088dc8f30160a6e5f8073594f7d9a6aa6 0x1400016ae 0x1400172b0, 0x7feff5d11fd,

0x77244bb4, 0x140010cdb,
0x140010ce9, 0x140010cb2

d12899958f7adc1be6a3f540f5a25a6ea5eb024dba018d7d3d0a1808df970323 0x140004ac2 0x140004c00
ae210c336cdfec7f7f523fa5b910981e2896f53184b3863621629e81cc0607ed 0x14000a747 0x78263e18, 0x14000a732
35b8a197bd6642f62af2b809ba72d8d7cc4ac18879f10cffeb8f2df66db93746 0x14000a6cd 0x14001f869, 0x140005d7e,

0x14000370e
c9ee386c3d2b8230d95870ce3391aa8a4890169a0fe021a5562d3735f2466160 0x140001238 0x140001243
db8caaf17e1e9afa4a64b7e6a57d07a2eb6669edaed70daced81295ea183da9f 0x14000233c 0x140002347
355341b710fe7f121df4c5fcfc32de9da5a5e2003f0869fcbb7a47f92f2471f2 0x40369d 0x403a64, 0x40146e, 0x4014f8
fba0cc427658445f0ca78d6a263c5b9a9714e99e733ffe25ba719c9b39b98664 0x14000a685 0x140019af9, 0x77ba4bb4
23c7eee980ca21ac8597bd6eb2147e4bfc1941490db87f276a13146914ea5637 0x140003957 0x1400075ac, 0x140003945,

0x1400074d6, 0x1400074fe,
0x14000721f

4f998e4290bdf67dc4a1e75ed739eb57defda3c329b6b07f29b3b6c771a8b3ea 0x1400010ae 0x1400032d9, 0x77ba4bb4
a238ccc209980719927c777fc9f16866403cb9d58c0c847b9cd92ece0d46e725 0x14000226c 0x14000ab18, 0x14000225a,

0x14000aa42, 0x14000aa6a,
0x14000a79f

17ecabd73e1eb5f7a7f6b35b0c48d3fcf5f73f65aef34993726439d7d27da849 0x14000254b 0x140002556
5c9e92f6b45b0cb098838e5db6623067396f066704f9c909b31d234bfaf74458 0x100005642 0x10000c259
697256960cdded3229b0f2f99b593751d3862774dc7c5cabdbbf769beadd263f 0x2000032cb 0x20000da50
c0be7a344a863894890127e61851838037bd9d076423bfc8296cfd6e01d66f6b 0x14000f939 0x140011d10, 0x14000f926
656ac5ec110c5f8ce68ce1962d6b2cbd47ee6ce20a181c88bb1e5481793f0578 0x140001c70 0x140001c81, 0x14000133a

Table 9: Malware Samples And Parameters Used In The Empirical Evaluation (§4.6).
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