
Toward a more dependable hybrid analysis of
android malware using aspect-oriented
programming

Aisha I. Ali-Gombe a,*, Brendan Saltaformaggio b,
J. “Ram” Ramanujam c, Dongyan Xu d, Golden G. Richard III c

a Department of Computer and Information Science, Towson University, RM 447, 7800 York Road, Towson, MD 21252, USA
b School of Electrical and Computer Engineering, Georgia Institute of Technology, Klaus Advanced Computing Building, 266 Ferst Dr NW,
Atlanta GA 30332, USA
c Center for Computation and Technology, Louisiana State University, 2027-C Digital Media Center, Baton Rouge, LA 70803, USA
d Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907, USA

A R T I C L E I N F O

Article history:

Received 24 March 2017

Received in revised form 2

November 2017

Accepted 5 November 2017

Available online 21 November 2017

A B S T R A C T

The growing threat to user privacy by Android applications (app) has tremendously in-

creased the need for more reliable and accessible analysis techniques. This paper presents

AspectDroid1—an offline app-level hybrid analysis system designed to investigate Android

applications for possible unwanted activities. It leverages static bytecode instrumentation

to weave in analysis routines into an existing application to provide efficient dataflow analy-

sis,detection of resource abuse,and analytics of suspicious behaviors,which are then monitored

dynamically at runtime. Unlike operating system or framework dependent approaches,

AspectDroid does not require porting from one version of Android to another, nor does it

depend on a particular Android runtime, making it a more adaptable and easier to use tech-

nique.We evaluate the strength of our dataflow algorithm on 105 apps from the DroidBench

corpus, with experimental results demonstrating that AspectDroid can detect tagged data

with 94.68% accuracy. Furthermore, we compare and contrast the behavioral patterns in 100

malware samples from the Drebin dataset (Arp et al., 2014) and 100 apps downloaded from

Google Play. Our results showed more traces of sensitive data exfiltration, abuse of re-

sources, as well as suspicious use of programming concepts like reflection, native code, and

dynamic classes in the malware set than the Google Play apps. In terms of runtime over-

head, our experiments indicate AspectDroid can comprehensively log relevant security concerns

with an approximate overhead of 1 MB memory and a 5.9% average increase in CPU usage.

© 2017 Published by Elsevier Ltd.

Keywords:

Hybrid analysis

Bytecode weaving

Instrumentation

Dynamic execution

Android

Malware

Dataflow

1. Introduction

Android malware and over-privileged applications are well-
known for privacy violations and data leakage (Gibler et al.,

2012). For instance, they transfer personal data outside the
devices of end-users without their consent. In a report pub-
lished by GDATA (GDATA Software, 2016), the Android platform
is estimated to account for 97% of all malware on mobile devices
in 2014. Over 2 million trojan applications have been detected

* Corresponding author.
E-mail address: aaligombe@towson.edu (A.I. Ali-Gombe).

1 A poster version of this paper appears in CODASPY 2016 (Ali-Gombe et al., 2016).
https://doi.org/10.1016/j.cose.2017.11.006
0167-4048/© 2017 Published by Elsevier Ltd.

c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:aaligombe@towson.edu
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.11.006&domain=pdf

in 2015, representing a 50% increase from 2014. Modern malware
is in use on an industrial scale by crime organizations and its
development is often highly professional. In another report,
Andrubis (Weichselbaum et al., 2014) performed an analysis
on over a million (malicious and benign) apps, and found that
38.79% of the apps have data leakage. The percentage further
increases from 13.45% in 2010 to 49.78% in 2014, and is also
noted by Zhou and Jiang (2012). In many respects, this pres-
ents an even greater threat to users than before, as mobiles
are entrusted with the most private of information and mobile
malware can very effectively spy on users in real time. Overall,
the security and privacy concerns surrounding these revela-
tions increase the need for reliable and accessible app analysis
systems.

Traditionally, Android apps are analyzed using either static
or dynamic approaches. Static analysis involves the use of pre-
determined signatures and/or other semantic artifacts such as
API calls, strings, etc. Enck et al. developed Kirin (Enck et al.,
2009) which evaluates privacy risks based on the set of per-
missions requested, while Felt et al. (2011) and Zhou et al. (2012)
analyzed Android applications by evaluating fine-grained API
calls in addition to the permissions set. Other semantic-
based analysis tools (Feng et al., 2014; Wu et al., 2012) examine
components and intents in addition to the permissions and
API calls made within the application binary.

Dynamic analysis on the other hand executes a target ap-
plication in a contained environment (APIMonitor, 2012; Backes
et al., 2013; Bartel et al., 2012; DroidBox, 2011; Enck et al., 2010;
Falcone et al., 2013; Karami et al., 2013; Rastogi et al., 2013;
Zhang and Yin, 2014a, 2014b). In general, static analysis has
the advantage of high performance and coverage. Conversely,
simple obfuscation can hinder the extraction of important data
such as API names. Dynamic analysis on the other hand pro-
vides a better view of an app’s behavior, although it is usually
limited in scope to observed execution paths.

Most comprehensive dynamic analysis techniques either
require instrumentation of the underlaying operating system
code (DroidBox, 2011; Enck et al., 2010; Rastogi et al., 2013) or
involve virtual machine introspection (Yan and Yin, 2012).They
provide effective sandboxing for the analysis of the target ap-
plications, but unfortunately, such techniques are heavily
dependent on OS versions and the Android runtime. Porting
and flashing a new build on real devices for various versions
of Android are not an easy task, which can limit the number
and kind of applications that can be analyzed. Existing
application-level techniques like those of APIMonitor (2012),
Backes et al. (2013), Bartel et al. (2012), Falcone et al. (2013), and
Karami et al. (2013) are mostly constrained to performing only
API monitoring. Although systems like Capper (Zhang and Yin,
2014a, 2014b) can perform app-level taint analysis, their heavy
reliance on static analysis for the extraction of taint slices makes
it equally vulnerable to simple obfuscation.

In this paper, we present AspectDroid, a hybrid analysis
system for Android applications based on the AspectJ instru-
mentation framework. AspectDroid performs static bytecode
instrumentation at the application level, and does not require
any particular support from the operating system or the Dalvik
virtual machine. It weaves in monitoring code at compile time
using a set of predefined security concerns, such as data/
resource abuse and other non-traditional behaviors like

reflective calls and native code execution. The target applica-
tion is then executed on any Android platform of choice for
which behavioral patterns are monitored and logged
dynamically.

In summary, AspectDroid is a new hybrid analysis system
for Android applications that has the following salient features:

Android Platform Independent: AspectDroid does not intro-
duce code at the operating system level. Instrumented
applications can run without any restrictions on both emula-
tors and physical Android devices.

Adaptable to all Android Runtimes: AspectDroid is not re-
stricted to the Dalvik virtual machine or Android runtime (ART).

Explicit Data Exfiltration: AspectDroid uses an efficient algo-
rithm to track data propagation dynamically from source to
sink.

Behavioral Tracing: We monitor applications for possible un-
wanted activities like telephony abuse, use of reflection,
dynamic classes, and native code execution.

To determine the effectiveness and efficiency of AspectDroid,
we carry out two different tests. In the first experiment, we
analyze 105 Android apps from the DroidBench project for pos-
sible data exfiltration. The results show that the AspectDroid
dataflow algorithm can accurately follow the propagation of
target data from source to sink with 94.68% F-score accuracy.
The second experiment analyzes the dynamic behavior of 100
malware samples from Drebin’s dataset (Arp et al., 2014) and
100 apps downloaded from Google Play. Our findings are item-
ized based on data exfiltration, use of reflection, dynamic class
loading, native code, and telephony abuse. The results of our
analysis indicate that while phone-related data like IMEI are
equally exfiltrated in both malware and the Google Play apps,
that’s not the case for user-related data like contacts where
leak traces were more common in malware samples than the
Google Play apps. Five malware samples use reflection for ma-
licious purposes, such as invoking the methods of a background
service to spoof user accounts and passwords. On the other
hand, all the reflective call invocations in the Google Play
samples did not result in any sensitive API call. Furthermore,
we have seen more telephony abuse in malware than the Google
Play apps, e.g., SMS was sent to all contacts on the phone
without the user’s consent. Nine malware samples invoke native
processes 72 times, as compared to 6 for the Google Play apps.

We further use the malware dataset to measure the instru-
mentation overhead for dynamic execution. The results show
that AspectDroid has limited memory overhead of around 1 MB
and a reasonable 5.9% average CPU usage overhead.

The rest of the paper is organized as follows: Section 2 pres-
ents background on the AspectJ instrumentation framework;
Section 3 provides an overview of AspectDroid’s design and as-
sociated algorithms; Section 4 presents the implementation of
AspectDroid; Section 5 contains testing and evaluation of results;
Section 6 enumerates some challenges and discusses limita-
tions and future work; Section 7 reviews the related literature
followed by Section 8 that concludes the paper.

2. Background

Instrumentation is the process of analyzing programs by adding
trace code to their source code, binary code, or execution

236 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

environment.This provides mechanisms for an analyst to define
concerns related to program verification, enforcement, moni-
toring, error-checking, performance, debugging, or tracing.
Instrumentation techniques do not necessarily modify code
but rather tamper with the execution or behavior based on
defined constructs. In recent years, instrumentation tech-
niques have gained momentum in the cybersecurity community
for vulnerability (Zhang and Yin, 2014b), malware (APIMonitor,
2012; DroidBox, 2011; Enck et al., 2010; Falcone et al., 2013;
Karami et al., 2013; Rastogi et al., 2013) and privacy analysis
(Backes et al., 2013; Bartel et al., 2012; Jeon et al., 2012; Zhang
and Yin, 2014a).

Aspect oriented programming (AOP), first introduced by
Kiczales et al. (1997), is a modularized programming model al-
lowing the separation of cross-cutting concerns (AspectJ Team,
2002–2003), which are difficult to capture in traditional pro-
gramming models. AOP encapsulates the concerns, defined as
aspects, by instrumenting extra behavior in the existing code.
These aspects are special constructs forming the building blocks
of AOP. Their designs can be generic, which allow for reuse
throughout program execution. Implementation of AOP can be
performed in two distinct ways:

1. Static instrumentation allows for code to be injected at
compile time. This technique merges both the aspects and
the original code into one binary, which then executes in
the execution environment of the original code.

2. Dynamic instrumentation, on the other hand, injects code
at runtime. In most instances, this requires a custom
classloader to enable the interpreter to understand and
implement the AOP features.

In 2001 (Kiczales et al., 2002), PARC developed an extension
for AOP designed specifically for the Java programming lan-
guage, called AspectJ. Its Java-like syntax, coupled with its ease
of use, makes AspectJ a very popular instrumentation tool for
Java programs. Aspects in AOP are defined by some key terms:

1. Pointcuts are defined by kinded constructs such as func-
tion call, method execution, within class, cflow, etc., which
match some specified signatures.

2. Signatures are semantic definitions which can be decoded
by the AspectJ compiler during joinpoint creation. It can en-
capsulate both broad and narrow definitions, giving an
analyst ample flexibility.

3. Joinpoints are points within the execution of the program
that are interesting and/or defined by the concerns of an
analyst. These are chosen based on constructs defined in
a pointcut.

4. Advice is the piece of code that gets executed when a certain
joinpoint is reached during program execution

In addressing security concerns, advice defined for a
joinpoint adds some functionalities such as logging, code in-
jection, value manipulations, execution rerouting, skipping
execution, etc. to an instrumented program. Advice to be ex-
ecuted can target before, after, and around the execution
of a particular joinpoint. As the name implies, execution of
before advice precedes the execution of the target joinpoint.
In this advice, parameters and the target object can be re-

trieved, in addition to signatures, source location, etc. For after
advice, in addition to the information extracted in before advice,
the return value can also be retrieved and evaluated. The most
interesting is around advice which, although potentially ex-
pensive to use, allows code injection and modification of
arguments, variable values, and return values.

The code snippet in Listing 1 shows a sample aspect that
defines a pointcut which picks a joinpoint at the call to
getDeviceId. When instrumented, this aspect will pick the
method getDeviceId from the class TelephonyManager. The
joinpoint is picked because the signature matches the method
in that class and it is the only class in the Android SDK with
such a method. However, if within the application there also
exists a library class with such a method, our broad signa-
ture will automatically capture such a joinpoint, too.

2.1. Bytecode weaving

In the Java compilation process, an intermediate representa-
tion called bytecode is generated when the original source code
is compiled. This bytecode is contained in class files repre-
senting each source class. More specific to Android, the system
has added another level of abstraction to its compilation
process, where the class files are further compressed into one
dex file. Bytecode weavers are tasked with weaving together
class files (both Java classes and aspect classes). In this paper,
our chosen bytecode weaver is AspectJ (Kiczales et al., 1997).
Its robust framework allows us to define and inject security
concerns related to Android apps for the purpose of logging
and monitoring. More so, its programming syntax and seman-
tics are identical to those of the Java language, allowing us to
tie and weave the monitoring code into a target Android ap-
plication with better precision.

AspectJ compilers (ajc) can accept both raw sources and class
files for compile-time weaving and thus have the capability to
compile and weave the aspect/Java sources and/or class files
to produce a new woven class. The resulting merged Java
bytecode has to be compatible with the execution platform’s
VM. However, in load-time weaving AspectJ exposes an inter-
face that facilitates the weaving process between the target
bytecode and a custom classloader.

3. System design

AspectDroid is a hybrid system that uses static instrumenta-
tion to inject monitoring code into the target app based on some
specific cross-cutting concerns. Requirements of our system
involve analyzing unknown binaries where there is no avail-
able source code. The core of AspectDroid is built based on

237c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

compile-time bytecode weaving. This form of static instru-
mentation takes the advice defined in an aspect and weaves
them at specified joinpoints in a target class file. For Android
apps, the resulting binary is dexed and repackaged into a new
apk. Since this new application does not need a custom
classloader, it has the flexibility of executing on any device
emulator without changes to the underlying OS.

With AspectDroid, the new injected code executes along-
side the original code and performs custom logging and other
analytical functions. The instrumentation engine (IE) which is
the primary component, forms the backbone of AspectDroid and
is designed to address three objectives:

1. Dataflow Analysis
2. Resource Abuse Tracing
3. Analytics of Suspicious Behavior

Our instrumentation code is encapsulated in an aspect and
is tailored for each of the objectives mentioned above. The
aspects are weaved into the target app using AspectJ’s ajc com-
piler, producing the instrumented version used to perform the
analysis.The instrumentation process is done in-vitro on a host
machine. After successful recompilation, the target app is then
pushed onto the test bed for execution (Fig. 2).

3.1. Dataflow analysis

AspectDroid performs application-level tainting of target data
source(s). Our approach is built around the fact that standard
Java and Android libraries use specific method naming con-
ventions to express common types of operations. Thus, we
utilize the consistent use of specific verbs, such as read, open,
write, put, connect, and execute, to define broad signa-

tures to capture actions such as file/stream/network access.
More specific signatures, such as getLongitude, are used to
define narrower joinpoints. Based on all the signatures, we
define pointcuts to select various source, sink, and propa-

gation joinpoints. With the help of AspectJ APIs, a joinpoint’s
data, such as the target object, parameters, return values,
etc. (as shown in Fig. 1) can be extracted at runtime. Java pro-
gramming semantics categorize data types as primitive, object,
and arrays. Although beyond the scope of this paper, it is im-
portant to note that the JVM stores and processes these data
types very differently. Therefore, our data sources, propaga-
tion and sink for each data type are handled differently. To
simplify the terminology, we refer to primitive data types,
such as string, and character, as low-level data types.

Our dataflow analysis is limited to explicit propagation,
where the tainted data must be in the sink call, as shown in
Listing 2. On the other hand, Listing 3 illustrates an example
of an implicit flow which exfiltrates inferred data based on the
real tainted data.

Fig. 1 – Parts of a method joinpoint.

Fig. 2 – AspectDroid implementation architecture.

238 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

The AspectJ API used by our system is not designed to create
joinpoints on conditional/branch instructions. Nonetheless, in
the analysis of Android applications, sensitive data leaving the
device is the real threat, not inferred data. As illustrated in
Listing 2, the real device IMEI was exfiltrated compared to
“Device not Emulator” in Listing 3.

3.1.1. Taint sources
We are interested in sources that are relevant to the privacy
and security of the user. We define vital sources as phone-
related data, content provider objects, file reads, and user input.
In Android, most important data are guarded by permissions
and only accessible to the user through specialized Android
API calls. Other relevant data not guarded by permission, such
as data read from files and user input from textboxes, are also
accessed via the standard Java/Android APIs. Specialized
pointcuts are created using signatures to intercept these vital
API calls. After execution, the return value is stored as a key
in a taint map with a corresponding special tag for each unique
source as the value. Depending on the return type, low-level
data types are stored in raw form, while every other object is
stored in hash form. This storage design is very significant in
reducing the overhead associated with checking if tainted data
is part of an object. It allows us to check if the object is tainted
using its hashcode at propagation or sink joinpoints.

3.1.2. Taint sinks
Taint sinks are defined as points where the target applica-
tion communicates with an external component, either within
the device or the outside world. In our dataflow analysis, we
seek to monitor only those sinks that form a possible

exfiltration point for the data sources defined above. The data
sinks are broadly categorized as network, e.g., writing to a
Socket, URLConnection, etc.; SMS sends; file writes (both or-
dinary files and shared preferences); and IPC. We use the same

signature semantics to pick the sink joinpoints. We also le-
verage the around advice of such joinpoints to check if its
arguments, or target, contain tainted data.

This process is straightforward for parameters. For example;
if the sink call is a sendTextMessage(..), the tainted data will
be checked against the parameters of this joinpoint. However,
for a target object we need to parse it and check the associ-
ated fields against the keys in the taint map. For example; if
the tainted data is appended to a URL, and then a
URLConnection is created from that URL object, which then
invokes it’s getOutputStream() method. Our system will have
to parse the URLConnection object to get the URL field and
compare that against the data in our taint map. Overall, data
exfiltration is detected if a tainted piece of data is found either
within the sink joinpoint’s parameters/parameter’s fields or
within the target/target’s fields.

3.1.3. Taint propagation
Knowing data sources and sinks alone cannot accurately de-
termine data exfiltration; we also need to identify the data
propagation process as represented by the sequence of vari-
able assignments along the path from source to sink. The
tainted data can be part of an object’s field and the object can
be manipulated in different ways. For every joinpoint, we check
if it contains tainted data; if so, the appropriate propagation
rule is picked based on the respective joinpoint’s return type
as enumerated in the 7 point rules below:

1. Rule 1: Joinpoint that returns a low-level data type and con-
tains a tainted argument.

2. Rule 2: Joinpoint that returns a low-level data type and con-
tains a tainted target.

3. Rule 3: Joinpoints that create an array from other tainted
data types.

4. Rule 4: Joinpoints that convert a tainted array to other data
types.

5. Rule 5: Object constructor joinpoint that contains a tainted
argument.

6. Rule 6: All joinpoints with object return type that contain
tainted arguments.

7. Rule 7: All joinpoints with object return type that contain
tainted target.

For joinpoints targeting low-level data types, their return
values and target object are the same. However, for object
joinpoints, the target is always a reference to the location of
the object in memory while the return type could be any-
thing. For example, an object’s joinpoint could return a Boolean
indicating success of a method call, void, a low-level data type,
or other objects. This distinction forms the basis of how our
taint tag/map is updated after the execution of the joinpoint.
Table 1 gives a taint propagation example for each of the flow
rules, and shows the taint tag/map update after the joinpoint’s
execution. Propagation rule 7 can create a weaving process that
might get out of hand, thus we included some optimizations
for joinpoints associated with that rule, based on the object’s
class.

To optimize the weaving process and reduce the complex-
ity of the instrumentation, the propagation’s joinpoints for every
source are created along the control flow path of its enclosing

239c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

method. For example, if the data source IMEI returned by
getDeviceId is found within the body of an activity’s onCreate
method, then the propagation joinpoints will only be created
for methods that satisfy the propagation rules above and are
in that control flow. This optimization greatly enhances our
weaving process and eliminates the need for redundant
joinpoints.

3.2. Resource abuse tracing

Access to some vital functionalities such as Telephony (SMS
and Calls) on the mobile devices are requested through spe-
cialized API calls. According to a 2012 Trend Micro report (Trend
Micro, 2012), resource abuse is the most common category of
Android malware. Thus it is imperative for an analysis system
to trace and report such abuse. With AspectDroid, the system
instruments the telephony methods invocations and have their
target object, parameters, and return value logged. This infor-
mation is significant in determining the phone number used
(premium service or device contact), the message content, set-
tings, and format.

3.3. Analytics of suspicious behaviors

Programming practices such as native call invocation, dynamic
class loading, native code execution and reflective call invo-
cation add flexibility to software development. Although these
concepts may be benign, malware can often hide its behavior
using these practices to hinder static analysis or for mali-
cious purposes such as privilege escalation.

Reflection, for instance, allows method calls to be re-
solved dynamically at runtime. Malware can use this technique
to hide calls to sensitive APIs. With AspectDroid, we instru-
ment reflective calls and analyze the target object at runtime
for possible tainted data sources, propagation, sinks or any sen-
sitive API calls.We also check their parameter arrays for possible
taint propagation. For suspicious behaviors other than data

exfiltration we instrument the “method.invoke” function call to
log the declaring class of the target object which resolves to
the method name and class. We also record the arguments
which contain the instance of the class object and the param-
eter array needed to invoke the target method. Listing 4 shows
the code snippet:

For malware analysis, the logVals routine is designed to check
for suspicious method invoked using reflection such as
getInstalledPackages.

Dynamic class loading is another programming concept in
Android that allows app to load extra classes at runtime. One
of the drawbacks of static bytecode instrumentation (and by
extension all static analysis) is that only available classes are
processed at compile time; extra classes loaded at runtime are
not affected by the weaving. To address this, AspectDroid imple-
ments dynamic class instrumentation: at the joinpoint where
Dexclassloader loads the new dex file, the weaved advice cap-
tures the absolute path to the file, sends it to the host machine
via an Asynchronous task, and waits for notification to proceed.
On the host machine, AspectDroid has a server side compo-
nent that receives the dynamic class, instruments it and pushes
it back to its original path on the testbed. On return of this an
Async task, normal program flow resumes. Although this wait
time slows down the process, it considerably expands the code
coverage of our analysis.

Table 1 – Flow rules examples for updating taint/tag map.

Rules Joinpoint Example Taint Data Taint Tag/Map Update

Rule 1 Int myInt = System.identityHashCode(val) valueOf(val), tag = DeviceID valueOf(myInt),
tag = DeviceID

Rule 2 String str1 = myInt.toString() valueOf(myInt),
tag = DeviceId

valueOf(str1),
tag = DeviceID

Rule 3 char arr[] = str1.toCharArray() valueOf(str1),
tag = DeviceID

Hashcode(arr),
tag = DeviceID
Elements of arr,
tag = DeviceID

Rule 4 Str str2=Arrays.toString(arr) Hashcode(arr),
tag = DeviceID

valueOf(str2),
tag = DeviceID

Rule 5 StringBuilder stb = new StringBuilder(str2) valueOf(str2),
tag = DeviceID

Hashcode(stb),
tag = DeviceID

Rule 6 stb.append(val2) Hashcode(stb),
tag = DeviceID

HashCode(stb)

valueOf(val2)
tag = LineNum

tag = DeviceID and
LineNum

Rule 7 Vector vec = new Vector() New empty vector is
created

vec.add(str2) valueOf(str2),
tag = DeviceID

Hashcode(vec),
tag = DeviceID

240 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

AspectDroid also logs native code invocation, both for simple
processes like Logcat or through the Java native interface. Al-
though it does not trace the activities within the native code,
it does log the name, object, parameters, and return value. This
logging not only enables us to view what native functions are
invoked by a target app but can also allow us to know the lo-
cation of the code. This functionality is especially significant
for a native payload that is downloaded dynamically at runtime.
While our system is not designed to parse the native
code, however with some manual effort analysts can be able
to pull the executable file and reverse engineer to get more
information.

4. Implementation

4.1. Prototype implementation

We implemented a working prototype of our system in Python,
Java, and PHP. The instrumentation engine is set up on a host
machine (64-bit Ubuntu system) for the initial dex weaving and
dynamic class instrumentation. Our software dependencies
include external tools and libraries; dex2jar (Bob, 2014),
AspectJ-ajc (AspectJ Team, 2015), Apache Web Server (Apache
Software Foundation, 2013), Apache Commons (Apache Soft-
ware Foundation, 2015), aspectjweaver (AspectJ Team, 2015)
and Android SDK (Android-Studio, 2015). Our initial experi-
ments were carried out on a physical device (a rooted Motorola
Droid2 with Android 2.2) and two emulated devices (Android
4.1.2 and 4.4.2). The execution environments are loaded with
text messages, calls, contacts, one Gmail account, and some
browser history. To buttress our claim that AspectDroid is
environment-agnostic, we performed a second round of testing
on HTC-One S9 running Android 6.0.

4.1.1. Helper component
AspectDroid includes a “helper” component containing modules
that automate key actions, including unpacking, repackag-
ing, and application signing. Android applications are written
in Java and compiled into a compressed class called
classes.dex. However, the AspectJ compiler does not under-
stand the dex file format, thus the need for decompression
before weaving. We use a popular open source tool called
dex2jar, which takes an application file (.apk) or classes.dex
as input and outputs a jar file containing individual .class files.
When the target application is unpacked, it can be weaved to-
gether with desired aspects. After the instrumentation process,
the class files are repackaged (dexed and zipped) and re-
signed into an Android-compatible app using jar2dex and
versign respectively.

4.1.2. Automated testing
Unlike many traditional applications, smartphone apps are
mostly event-driven and exhibit their true functionalities based
on user interactions and in response to system events. For
example, forcing an SMS to be received so that a broadcast re-
ceiver can be activated is an important system event that needs
to be triggered for us to observe SMS abuse.

In the case of bulk analysis, manual execution of apps and
triggering such events can be time-consuming. One of the draw-
backs of dynamic analysis is code coverage and a single
execution path corresponding to a single app execution,
whereby information obtained may not necessarily represent
the complete behavior of the target app. Our assumption is the
more a tool can explore an app, the more information about
the app’s behavior can be obtained. For that reason, we build
into AspectDroid an automated testing module as Python scripts
which triggers a series of system and user events to more fully
exercise an app’s functionality. This module combines some
open source tools together with custom-built instrumenta-
tion programs. These events are designed to mirror real-life
events on a regular Android device. They include:

1. App installation and activation of its main activity, as speci-
fied in the manifest, using adb.

2. Random keystrokes that simulate user touch and ges-
tures on the app using monkey.

3. A user input is simulated where necessary within the in-
strumentation framework. EditText user inputs can be
associated with different input types. Most developers
specify input types as provided by the Android API – email,
password, etc. We make a best effort to generate data to
match its possible input type. This program is attached to
the body of the instrumentation code.

4. SMS, calls and device settings are generated and manipu-
lated using uiautomator while GPS coordinates are simulated
and triggered on the emulator by telnet.

Independent testing frameworks like Android Monkey are
limited to only random application touches and gestures. With
our automated testing, the simulated user input built on the
EditText-SetText method automatically creates the needed
textbox data during analysis, which proves to be very impor-
tant. For example, if an EditText is expecting an email, if the
Ok button is hit using Monkey, the application may return an
error and program execution may not proceed due to an empty
text. But with our injected input text, execution will proceed
without an error.

Other vital parts of this testing module built with
uiautomator help with forcing various system’s event like
Calls, which would otherwise have to be done manually.

5. Testing and evaluation

Our approach seeks to provide analysts with an easier to use
and more flexible system for application analysis. It is capable
of examining and monitoring Android applications without re-
striction based on version and/or platform while still
maintaining a very high level of accuracy. The objectives of the
evaluation were to quantify the following aspects of the sys-
tem’s performance:

1. Accuracy. We tested the accuracy of our dataflow algo-
rithm on 105 applications from the DroidBench corpus.

2. App Analysis. We further evaluate the effectiveness of our
system by comparing the behavioral patterns in 100 real
malware families from the Drebin dataset and a set of 100

241c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

apps downloaded from Google Play. We examine data
exfiltration, telephony abuse, reflective invocation, dynamic
class loading, and native code execution.

3. Execution overhead. We measured the cost associated with
dynamic execution of the target app post-instrumentation.

5.1. Accuracy of dataflow algorithm

DroidBench 2.0 (DROIDBENCH, 2015) is an open source project
consisting of 120 simulated Android applications used for testing
analysis tools. These applications evaluate the accuracy of an
algorithm in detecting dataflow between a source and a sink.
The authors employ different methods of data manipulation,
such as callbacks, arrays, application lifecycle, inter-application
communication, loops, reflection, threading and implicit flows
to hide the flow of sensitive data. The apps are relatively small
and they may not necessarily be representative of real-life apps
and/or malware in terms of size. However, they contain a wide
spectrum of diverse, tricky dataflow paths that can be em-
ployed by malicious and/or over-privileged applications, thus
making them a corpus of interest to test AspectDroid.

Before executing the apps with AspectDroid, we execute the
untampered dataset to determine if they are running cor-
rectly and producing expected results. Out of 120, 15 apps failed
to execute correctly in our environment due to either permis-
sion errors or other bugs and were excluded from the analysis.
The remaining 105 apps were instrumented using our
AspectDroid prototype.

Based on the original source code for the 105 apps, the
ground truth indicates 86 apps have data leaks and 19 apps
have no leaks. Our experiments show that AspectDroid yielded
80 true positive (TP) results, 16 true negatives, 3 false posi-
tives, and 6 false negatives. Thus, the AspectDroid’s precision
is 96.4%, recall is 93.02%, and the standard F-measure stands
at 94.68%. Subsequent analysis showed that in the three false
negative cases, tainted and untainted data were added to a data
structure, then the app sinks only the untainted data. Our al-
gorithm taints an object that contains a tainted field, entry or
element and does not handle removal of that data/object from
taint map once it is written. Since the untainted data is still
part of a tainted object, we recorded a false positive. With
respect to the six false positives, four were apps with the fol-
lowing propagation paths: Public API Field1,

StartProcessWithSecret and Implicit Flows. Our data-
flow algorithm taints by means of data comparison (possible
taint with items on taint map), thus data exfiltration that is
not explicit cannot be detected.The remaining two under taint-
ing were a result of an optimization added to our propagation
rule in order to reduce the effect of over-weaving (which results
in too much additional code added to the application). This op-
timization is a tradeoff between the effect of over-weaving and
a possible false negative; hence, these two false results are
avoidable.

5.2. App analysis

To test the effectiveness of AspectDroid for analyzing Android
applications for violations of security and privacy concerns,
we used malware samples from Drebin (Arp et al., 2014) dataset,

a corpus comprising 179 malware families. In our experi-
ments, we picked one sample per family from the top 100
families. For the non-malicious samples, we downloaded 100
Android apps from Google Play. All 200 samples are instru-
mented, recompiled, and executed using our automated testing
module. In our prototype we tagged 27 important data sources,
including phone-related data (IMEI, IMSI, ICCID, line number,
and location data), database queries, and input data. We also
created joinpoints on some sensitive APIs that perform tele-
phony functions, native code execution, dynamic class loading,
and reflection invocation.The dataflow and sensitive API traces
created after each app execution are then parsed using a Python
script to obtain the aggregated result. We categorize the analy-
sis result into 4 groups: data exfiltration, telephony abuse,
reflection and dynamic class loading, and native code execution.

5.2.1. Data exfiltration
Malware and to a large extent privacy-agnostic applications
often target user and/or phone-related data either with ma-
licious intent, for advertisement or identification/records
purposes. Most sensitive data are guarded by one-time per-
missions (for Android versions 1–5) that give an app open access
to quite a large group of data on a device e.g., Phone-state per-
mission. We define exfiltration as unauthorized writes of
sensitive data to a file (log, sharedprefs, user-defined files), the
network, or SMS that are not explicitly granted by the user at
the point of transfer. Our analysis of the 100 malware samples
showed 127 explicit data exfiltration paths of the 27 tainted
sources carried out by 23 samples. Our results showed IMEI,
IMSI, ICCID and LN are the most widely exfiltrated phone data.
This is followed by contacts, call logs, and SMS from user-
related data. SharedPref and Network are the most common
sink calls we observed while SMS was the least observed. For
the Google Play apps, we observed 25 exfiltration paths, most
of which are location and phone IMEI. Network is the sink path
for all these data leaks.

5.2.2. Telephony abuse
SMS is one of the most widely abused resources on Android
smartphones. Out of the 100 samples we evaluated, 8 samples
were recorded to have some level of SMS abuse. The Pirater
malware sends SMS to all contacts on the user’s phone, posing
as the user. The socially engineered, “friendly” SMS gener-
ated by Pirater contains a link that downloads the same
malware to the receiver’s phone if clicked. The MobileTX
malware, on the other hand, does not just abuse SMS func-
tionality, but also transmits the phone’s ICCID to a private
number via SMS.The remaining 6 samples send specially crafted
SMS to premium numbers. We have not recorded any phone
call interceptions, spoofing or recording in any of the ana-
lyzed malware. We observed the use of SMS in 2 apps and Calls
from 3 apps which belong to the communication category on
Google Play. In all these instances, the SMS and CALLs were
authorized by the user, based on user-supplied input.

5.2.3. Reflection and dynamic class loading
The reflection API is part of the standard Java environment and
allows method calls to be resolved dynamically at runtime. It
is a powerful tool that can be employed by malware to evade
static detection. We have observed 5 malware samples that use

242 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

reflection in different ways. We then examine if such invoca-
tion exhibits some element of malicious intent. The Mobsquz
and FakeDoc malware reflectively check if the device has
support for telephony-related services (phone calls and SMS).
Although this may not necessarily constitute malicious be-
havior, given the functionality of the applications as an antivirus
scanner and battery optimizer, it requires further analysis. The
FaceNiff malware uses reflection to invoke the methods of a
background service that spoofs user accounts and passwords
after it has successfully executed the super user command.
The 2 other remaining families, BaseBridge and DroidDream,
are not suspicious as they both invoke methods from GUI-
related classes. We observed 34 instances of reflective
call invocation on the Google Play apps. Surprisingly, this is
higher than reflective call invocations recorded within
the malware samples. We also observed that the BaseBridge
malware dynamically creates 3 jar files (bootablemodule.
jar, moduleconfig.jar, mainmodule.jar) and 2 dex files
(mainmodule.dex and bootablemodule.dex). Within the
timeframe for our automated testing and even with an ex-
tended manual execution afterwards, the app did not load these
new classes dynamically as expected. Thus, we rewrote the
binary to force the app to load the new dex files. This enables
our dynamic instrumentation to trace the loading joinpoint and
the newer classes were instrumented using our dynamic in-
strumentation engine. For the Google Play apps, 7 dynamic
classes were loaded in 5 apps within our testing time. We were
able to successfully instrument and execute all the dynamic
classes.

5.2.4. Native processes
Android applications are commonly written in pure Java code,
although quite a number of them include an embedded C/C++
binary. Over the years, Android malware has exploited this ca-
pability to embed mostly root exploits that trigger privilege
escalation. In other instances, Linux commands that commu-
nicate with the underlying Android kernel are becoming
increasingly common. In our dataset, 9 out of the 100 malware
samples invoke native processes 72 times. Commands like su,
chmod, ps, mount, and Android’s logcat are the most widely
executed native processes. We have also noted the execution
of an unknown binary (myicon) in DroidKungFu malware. Since
AspectDroid does not instrument native code, we log the code
path and then manually extract the code using adb. An Md5Sum
later verified that the native binary is a root exploit belong-
ing to the family RageAgainstTheCage. We’ve noticed native
code execution in 6 out of the 100 Google Play apps. In com-
parison with the malware apps, the Google Play apps all
executed “.so” libraries vs. starting other processes like chmod

or su. Beyond noting that a particular native code has been
called within the Java execution, AspectDroid does not monitor
the native code’s behavior, as the instrumentation engine works
only on Java.Thus it is inconclusive what some unknown native
libraries do.

5.3. Runtime overhead

The most important costs of instrumentation occur at runtime,
since both CPU and memory usage are vital on a resource con-

strained machine. It is especially important that apps limit their
resource usage to avoid possible garbage collection.Though un-
common in foreground processes, this does occur when apps
consume too many resources.

The CPU usage is the percentage of CPU time used by a
process. We measured the value given the system uptime
(uTime), process start time (startTime), and the CPU time spent
in both user and kernel code for the main process and any of
its child processes (uTime, sTime, cuTime, csTime).The formula
is given below:

seconds upTime startTime Hertz
tTime uTime sTime CuTime cs

= − ()
= + + + TTime

cpuUsage tTime Hertz seconds= ()() ∗ 100
(1)

We carried out this experiment by re-running the 100
malware families using automated testing on the same plat-
form, keystroke seeds, and number/pattern of system and user
events. Using the procrank utility, we obtained the process
memory size from each app both before and after instrumen-
tation as well as the CPU indices above. The experiment was
executed 5 times and an average for each metric (Memory and
CPU) was computed.

The dark portion of the stacked bar chart illustrated in
Fig. 3 shows the memory usage for each malware pre-
instrumentation, while the lighter shade shows the overhead
after instrumentation. The data illustrates that the MemSize

difference is uniform and on average, 1 MB of additional
memory is required to execute the instrumented application.
This translates to approx 16% more memory usage on average.
In our tests, this overhead caused no issues with any of the
apps.

Fig. 4 on the other hand shows the percentage of CPU needed
to render and execute each malware. The dark portion indi-
cates the CPU usage before instrumentation while the lighter
portion stacked showed the CPU usage overhead. Although the
results are not uniform, the average CPU overhead is approxi-
mately 5.91%. Some apps tend to have significantly more
overhead than others. We manually examined these apps and
found two important factors: the number of data sources tagged
and the propagation path can have varied and compounded
impact on the CPU usage overhead. CPU intensive apps like
games that request a lot of tagged data, and especially if these
requests are along the path of an activity, tend to require more
CPU time to load the activity (e.g., the PJApps and Jifake
malware). Although the Fujacks malware has the highest CPU
usage pre-instrumentation, its overhead is negligible since it
did not request any tagged data.

6. Challenges and discussion

In the evaluation section we discussed the accuracy of the
AspectDroid algorithm in detecting data leaks, the importance
of tracing resource abuse and detection of suspicious behav-
iors like reflection, native code and dynamic class loading.
Furthermore, we also highlighted the overhead associated with
our system. Naturally, some challenges remain. In bytecode
weaving, the compiler has to make a best effort adjustment

243c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

to registers, fields, methods and instructions of the weaved class.
Some applications can be sensitive to this kind of intrusion
and as such can pose a setback in our recompilation process.
We make a best effort to optimize the weaving process, espe-
cially in dataflow aspects, while at the same time keeping false
negatives as low as possible. Specifically, we ensure that:

1. Propagation rule 1, which handles primitive returns, ex-
cludes void and Boolean values. Allowing Boolean values
in our taint map significantly increases false positives.

2. GUI-related classes that handle graphics, views, and activi-
ties are also excluded from propagation in propagation
rule 7.

Fig. 3 – MemSize overhead (MB).

Fig. 4 – CPU usage overhead (%).

244 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

3. Well-known public libraries from Android, Amazon, Google,
Samsung, and Apache are excluded from the scope of
weaving, however their calls are included within the sig-
natures, if necessary.

4. We use abstract methods within advices to reduce the
number of instructions added directly to the weaved class.

Overall, our system effectively uses these optimization tech-
niques to boost its accuracy and performance. In our testing,
AspectDroid has proven to be effective in analyzing dataflow
paths, sensitive API monitoring and analysis of suspicious be-
haviors. It provides a flexible and efficient system for assessing
Android applications and does so with relatively low overhead.

6.1. Limitations

The main limitations of every static bytecode instrumenta-
tion are anti-unpacking and anti-repackaging obfuscation
mechanisms. Developers can include obfuscated bytecode in
their compiled dex files that decompilers cannot parse cor-
rectly. However, in most cases this obfuscation does not affect
method invocation, which is what AspectDroid uses to create
joinpoints. Also, malware can detect instrumentation code and/
or change the package signatures, which can negatively affect
analysis with AspectDroid.

The AspectJ instrumentation framework is limited to pro-
cessing only method instructions. As opposed to variable level
tainting, AspectDroid’s dataflow compares the hashes of raw data
and as such cannot be affected by simple manipulations
through variable re-assignment. However, arithmetic instruc-
tions can have an adverse effect on our taint propagation
(though we have not encountered such in our analysis). As men-
tioned in Section 3, joinpoints on conditional instructions
cannot be created due to limitation in the AspectJ’s APIs. This
limits our dataflow analysis to explicit data exfiltration.

Another limitation of our approach is analysis of native code.
At this point, AspectDroid can only trace to the point where a
native class is loaded and executed and it can return the name
and parameters for the execution. However, it cannot trace
inside native code. Very few Android applications use native
code and even with malware, the native code is typically used
only for privilege escalation which is heavily dependent on
system vulnerabilities.

6.2. Future work

As part of future work, we are working on improving our au-
tomated testing module such that all control flow paths are
forced to execute. Using code refactoring, we intend to inject
simple methods after arithmetic and conditional instruc-
tions that analyze the preceding instructions’ parameters.Then
joinpoints will be created for the new method call at weaving
time. This will take care of possible mis-propagation, thereby
improving our dataflow analysis. Furthermore, the ability to
analyze native code will significantly improve the scope of
AspectDroid and as such, we intend to include a debugging ar-
chitecture in a future revision of AspectDroid. Within the
instrumented advice during native code execution, a debug-
ger can be started with the ID of the new process to collect
lower level syscalls made by the native code.

7. Related work

7.1. Application-level instrumentation

The first application-level dynamic taint tracking on Android
was developed by (Zhang and Yin, 2014a, 2014b). Their system,
called Capper, is designed to monitor exfiltration of sensitive
data from source to sink. However, their work requires a large
amount of static analysis to refactor the Java bytecode and
compute taint slices, which are used at runtime as the taint
propagation map. This system is prone to most of the inac-
curacies of static taint tracking that can result from simple
obfuscation techniques. Furthermore, data sources, propaga-
tion, and sinks that pass through reflective call invocation are
not processed if the invoked class and method names cannot
be statically resolved. And finally, like most app-level analy-
sis systems, Capper does not handle dynamic class
instrumentation. Our system, on the other hand, can perform
better dataflow analysis since it can handle Java reflection and
runtime class instrumentation.

Another research effort that target app-level instrumenta-
tion is APIMonitor (2012). The authors of DroidBox developed
APIMonitor to counter its numerous porting issues. Afonso et al.
(2015) adopted this technique to detect Android malware by
mining dynamic features (API and system calls). Further-
more, the work of Backes et al. (2013), Bartel et al. (2012), Falcone
et al., 2013 (RV-Droid) and Karami et al. (2013) all leverage static
bytecode instrumentation to analyze method calls in target
applications at runtime. Although they use different instru-
mentation frameworks, these systems are all limited to sensitive
API monitoring during program execution. In contrast,
AspectDroid is a complete analysis system that targets secu-
rity concerns such as dataflow analysis, sensitive API
monitoring, as well as analytics of suspicious behaviors.

7.2. Low-level instrumentation

Most Android dynamic analysis tools are developed by instru-
menting the operating system code and/or the underlying
framework. TaintDroid (Enck et al., 2010) is a real time dynamic
taint tracking system that monitors the flow of sensitive data.
It uses some basic dataflow rules to track the movement of
tainted variables, method files, and IPC messages from sources
until they reach a specified Java library sink.

Several extensions to TaintDroid (DroidBox, 2011; Rastogi
et al., 2013; Weichselbaum et al., 2014) were built with added
functionalities. DroidBox (2011), for instance, logs an app’s ac-
tivities related to starting services, broadcast receivers, SMS,
and calls made, cryptography operations performed using the
Android API, and file read/write operations, irrespective of taint
marking. Andrubis (Weichselbaum et al., 2014) is an auto-
mated analysis system that combines both static and dynamic
approaches to an app’s analysis. Applications submitted via
an online link are dynamically examined on a QEMU-based
emulation environment for method tracking, system level analy-
sis and data exfiltration using TaintDroid. Other systems like
AppsPlayground (Rastogi et al., 2013) added more functional-
ity, such as kernel level-monitoring and automated testing, to
TaintDroid.These approaches rely on low-level instrumentation,

245c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

making them very OS version-dependent and in some cases
platform-dependent. Importantly,TaintDroid-based systems are
very dependent on the Dalvik virtual machine and as such will
require a complete make-over to port to the new Android
runtime. Furthermore, stealthy malware can often detect emu-
lation environments which may result in inaccurate analysis
(Mutti et al., 2015). Lastly, due to significant requirements for
expert knowledge to port from version to version, the capaci-
ties of such system for long term analysis is very limited.

Other host-based dynamic analysis tools are CopperDroid,
DroidScope, AASandbox and Crowdroid. CopperDroid (Tam et al.,
2015) is virtual machine introspection (VMI) technique that re-
constructs malware behaviors by observing and dissecting
system calls which result in the identification of interesting
OS and high-level Android-specific traits. Another technique
that uses VMI is DroidScope (Yan and Yin, 2012). This system
monitors the activity of untrusted applications through API
tracing, native instruction and Dalvik tracing, and taint track-
ing. AASanbox (Blasing et al., 2010), on the other hand, evaluates
system call logs by placing hooks between kernel space and
user space. These hooks hijack the system calls made and log
information such as process ID, syscall name, and execution
time. CrowDroid (Burguera et al., 2011) analyzes system calls
performed by an application based on logs collected using the
strace debugging utility in a lightweight CrowdClient. This
system is limited to extracting only Linux-specific informa-
tion like open files, but cannot give broad information on IPC
and Android-specific data. Afonso et al. (2016) perform runtime
analysis of the Android native code in a sandbox to augment
static analysis techniques that operate only on the Java code.
Most of these sandboxing techniques are built on a single
Android version, thus restricting its use to that particular
release. If tasked to analyze malware not developed for such
release, the tool may likely fail. While for AspectDroid, it is en-
tirely an app-level analysis system which cannot be affected
by new Android release either in SDK version or runtime.

More recently, dynamic binary instrumentation (DBI) systems
like DynamicRIO (Bruening et al., 2012), PIN (Luk et al., 2005),
Spike (Vasudevan and Yerraballi, 2006), and Dyninst (Buck and
Hollingsworth, 2000) that perform runtime monitoring are very
dependent on low-level system operation. With the excep-
tion of PIN, these are not applicable to ARM systems. DBI
techniques are also very dependent on the underlying hard-
ware architecture and as such will require modification of the
operating system to perform Android app analysis.

8. Conclusion

In this paper we have discussed AspectDroid, a hybrid system
for Android app analysis, which provides an efficient and flex-
ible alternative for detecting suspicious and illicit behavior
independent of Android runtime and or system releases. Our
goal is to ease analysis and avoid the numerous problems as-
sociated with porting between versions and building a
customized device kernel.

The instrumentation engine which is at the heart of
AspectDroid is designed to achieve three main objectives: data-
flow analysis, detection of resource abuse, and analytics of
suspicious behavior like native code and reflective call invo-

cation. AspectDroid leverages the AspectJ instrumentation
framework to inject monitoring code. The instrumented app
is then executed dynamically to trace and log runtime activi-
ties at specific joinpoints. It can also instrument runtime classes
for further analysis thus increasing code coverage. We have
demonstrated that AspectDroid can achieve up to 94.68% F-score
accuracy in detecting data leaks. Further analysis of 100
malware families for the Drebin dataset and 100 apps from
Google Play showed our system can effectively analyze a diverse
set of apps, including stealthy malware, with very minimal CPU
and memory overhead.

Acknowledgment

This work was funded by the NSF grant, CNS #1409534.

R E F E R E N C E S

Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL.
Identifying Android malware using dynamically obtained
features. J Comput Virol Hacking Tech 2015;11(1):9–17.

Afonso VM, de Geus PL, Bianchi A, Fratantonio Y, Kruegel C,
Vigna G, et al. Going native: using a large-scale analysis of
Android apps to create a practical native-code sandboxing
policy. In NDSS; 2016.

Ali-Gombe A, Ahmed I, Richard GG III, Roussev V. AspectDroid:
Android app analysis system. In Proceedings of the Sixth ACM
on Conference on Data and Application Security and Privacy,
pages 145–147. ACM, 2016.

Android Studio. Android developers; 2015. [Accessed 11 August
2015].

Apache Software Foundation. Apache HTTP Server Project. 2013.
https://httpd.apache.org/download.cgi. [Accessed 11
December 2015].

Apache Software Foundation. Apache commons – common lang;
2015. https://commons.apache.org/proper/commons-lang/
download_lang.cgi. [Accessed 30 August 2015].

APIMonitor. Installation and usage of DroidBox APIMonitor; 2012.
[Accessed 6 May 2015].

Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K, CERT
Siemens. Drebin: Effective and explainable detection of
Android malware in your pocket. In Proceedings of the
Annual Symposium on Network and Distributed System
Security (NDSS), 2014.

AspectJ Team. The AspectJ TM programming guide; 2002–2003.
AspectJ Team. Eclipse – AspectJ compiler; 2015. [Accessed 26

August 2015].
Backes M, Gerling S, Hammer C, Maffei M, von Styp-Rekowsky P.

Appguard–enforcing user requirements on Android apps. In:
Tools and algorithms for the construction and analysis of
systems. Springer; 2013. p. 543–8.

Bartel A, Klein J, Monperrus M, Allix K, Le Traon Y. Improving
privacy on Android smartphones through in-vivo bytecode
instrumentation. Technical Report 978-2-87971-111-9, uni. lu;
2012.

Blasing T, Batyuk L, Schmidt A-D, Camtepe SA, Albayrak S. An
Android application sandbox system for suspicious software
detection. In Malicious and unwanted software (MALWARE),
2010 5th international conference on, pages 55–62. IEEE; 2010.

Bob P. Dex2jar; 2014. [Accessed 13 December 2014].
Bruening Q, Zhao D, Amarasinghe S. Transparent dynamic

instrumentation. In International Conference on Virtual
Execution Environments, VEE-12; 2012.

246 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0010
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0010
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0010
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0015
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0015
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0015
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0015
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0020
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0020
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0020
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0020
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0025
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0025
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr9005
https://httpd.apache.org/download.cgi
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr9000
https://commons.apache.org/proper/commons-lang/download_lang.cgi
https://commons.apache.org/proper/commons-lang/download_lang.cgi
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0035
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0035
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0040
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0040
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0040
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0040
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0040
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0045
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr9010
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr9010
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0050
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0050
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0050
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0050
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0055
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0055
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0055
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0055
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0060
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0060
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0060
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0060
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0065
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0070
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0070
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0070

Buck B, Hollingsworth JK. An API for runtime code patching. Int J
High Perform Comput Appl 2000;14(4):317–29.

Burguera I, Zurutuza U, Nadjm-Tehrani S. Crowdroid: Behavior-
based malware detection system for Android. In Proceedings
of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’11, pages 15–26;
2011.

DroidBox. Droidbox – Android application sandbox; 2011.
[Accessed 6 May 2015].

DROIDBENCH. Secure software engineering at the European
center for security and privacy by design – ec-spride; 2015.
[Accessed 8 May 2015].

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS
’09, pages 235–245; 2009.

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, et al.
TaintDroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10; 2010.

Falcone Y, Currea S, Jaber M. Runtime verification and
enforcement for android applications with RV-Droid. In:
Runtime Verification, vol. 7687. Lecture Notes in Computer
Science. 2013. p. 88–95.

Felt AP, Chin E, Hanna S, Song D, Wagner D. Android permissions
demystified. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, pages 627–
638; 2011.

Feng Y, Anand S, Dillig I, Aiken A. Apposcopy: Semantics-based
detection of Android malware through static analysis. In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
2014, pages 576–587; 2014.

GDATA Software. GDATA mobile malware report: Q4/2015; 2016.
https://public.gdatasoftware.com/Presse/Publikationen/
Malware_Reports/US/G_DATA_MobileMWR_Q4_2015_US.pdf.
[Accessed 3 October 2016].

Gibler C, Crussell J, Erickson J, Chen H. Androidleaks:
Automatically detecting potential privacy leaks in android
applications on a large scale. In: Trust and Trustworthy
Computing, vol. 7344. Lecture Notes in Computer Science.
2012. p. 291–307.

Jeon J, Micinski KK, Vaughan JA, Fogel A, Reddy N, Foster JS, et al.
Dr. Android and Mr. Hide: Fine-grained permissions in
Android applications. Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM ’12, pages 3–14, New York, NY, USA;
2012. ACM.

Karami M, Elsabagh M, Najafiborazjani P, Stavrou A. Behavioral
analysis of Android applications using automated
instrumentation. In Software Security and Reliability-
Companion (SERE-C), 2013 IEEE 7th International Conference
on, pages 182–187. IEEE, 2013.

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier
J-M, et al. Aspect-oriented programming. In: ECOOP’97 Object-
oriented Programming, vol. 1241. Lecture Notes in Computer
Science. 1997. p. 220–42.

Kiczales GJ, Lamping JO, Lopes CV, Hugunin JJ, Hilsdale EA,
Boyapati C. Aspect-oriented programming, October 15 2002.
US Patent 6,467,086; 2002.

Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, et al. Pin:
building customized program analysis tools with dynamic
instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’05, pages 190–200; 2005.

Mutti S, Fratantonio Y, Bianchi A, Invernizzi L, Corbetta J, Kirat D,
et al. BareDroid: Large-scale analysis of Android apps on real

devices. In Proceedings of the 31st Annual Computer Security
Applications Conference, pages 71–80. ACM; 2015.

Rastogi V, Chen Y, Enck W. AppsPlayground: automatic security
analysis of smartphone applications. In Proceedings of the
Third ACM Conference on Data and Application Security and
Privacy, CODASPY ’13, pages 209–220; 2013.

Tam K, Khan SJ, Fattori A, Cavallaro L. CopperDroid: automatic
reconstruction of Android malware behaviors. In NDSS; 2015.

Trend Micro. Android malware: how worried should you be?;
2012. [Accessed 4 October 2016].

Vasudevan A, Yerraballi R. SPiKE: engineering malware analysis
tools using unobtrusive binary-instrumentation. In
Proceedings of the 29th Australasian Computer Science
Conference – Volume 48, ACSC ’06, pages 311–320; 2006.

Weichselbaum L, Neugschwandtner M, Lindorfer M, Fratantonio
Y, van der Veen V, Platzer C. Andrubis: Android malware
under the magnifying glass. Vienna University of Technology,
Tech. Rep. TRISECLAB-0414-001; 2014.

Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. DroidMat: Android
malware detection through manifest and API calls tracing. In
Proceedings of the 2012 Seventh Asia Joint Conference on
Information Security, ASIAJCIS ’12, pages 62–69; 2012.

Yan L-K, Yin H. DroidScope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic Android malware
analysis. In USENIX Security Symposium, pages 569–584;
2012.

Zhang M, Yin H. Efficient, context-aware privacy leakage
confinement for Android applications without firmware
modding. In Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, ASIA
CCS ’14, pages 259–270; 2014a.

Zhang M, Yin H. Appsealer: automatic generation of
vulnerability-specific patches for preventing component
hijacking attacks in Android applications. In Proceedings of
the 21th Annual Network and Distributed System Security
Symposium, NDSS 2014; 2014b.

Zhou Y, Jiang X. Dissecting Android malware: characterization
and evolution. Security and Privacy (SP), 2012 IEEE
Symposium on, pages 95–109; 2012.

Zhou Y, Wang Z, Zhou W, Jiang X. Hey, you, get off of my market:
detecting malicious apps in official and alternative Android
markets. In Proceedings of the Network and Distributed
System Security Symposium, NDSS2012; 2012.

Aisha Ali-Gombe is an assistant professor of Computer Science at
Towson University and a research scientist with the Center for Com-
putation and Technology Louisiana State University. Dr. Ali-
Gombe earned her Ph.D. in Engineering and Applied Science with
major in Computer Science from the University of New Orleans
in May 2017, following an M.S. degree in Computer Science in 2012.
Her research interest in cybersecurity and digital forensics include
code fingerprinting, malware analysis, privacy policy enforce-
ment techniques, mobile security and memory and database
forensics.

Brendan Saltaformaggio is an assistant professor in the School of
Electrical and Computer Engineering at Georgia Tech, with a cour-
tesy appointment in the School of Computer Science. His research
interests lie in computer systems security, cyber forensics, and the
vetting of untrusted software. Dr. Saltaformaggio serves as the Di-
rector of the Cyber Forensics Innovation (CyFI) Laboratory. The CyFI
Lab’s mission is to further the investigation of advanced cyber
crimes and the analysis and prevention of next-generation malware
attacks, particularly in mobile and IoT environments. This re-
search has led to numerous publications at top cyber security
venues, including a Best Paper Award from the ACM Conference
on Computer and Communications Security (CCS’15) and a Best
Student Paper Award from the 2014 USENIX Security Symposium.

247c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0075
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0075
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0080
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0080
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0080
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0080
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0080
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0085
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0085
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0090
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0090
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0090
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0100
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0100
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0100
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0100
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0105
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0105
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0105
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0105
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0105
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0110
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0110
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0110
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0110
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0115
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0115
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0115
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0115
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0120
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0120
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0120
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0120
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0120
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr9015
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/US/G_DATA_MobileMWR_Q4_2015_US.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/US/G_DATA_MobileMWR_Q4_2015_US.pdf
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0130
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0130
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0130
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0130
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0130
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0135
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0135
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0135
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0135
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0135
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0135
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0140
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0140
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0140
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0140
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0140
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0145
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0145
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0145
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0145
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0150
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0150
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0150
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0155
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0155
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0155
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0155
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0155
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0160
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0160
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0160
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0160
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0165
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0165
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0165
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0165
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0170
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0170
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0175
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0175
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0180
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0180
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0180
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0180
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0185
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0185
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0185
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0185
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0190
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0190
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0190
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0190
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0195
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0195
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0195
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0195
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0200
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0200
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0200
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0200
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0200
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0205
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0205
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0205
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0205
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0205
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0210
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0210
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0210
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0215
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0215
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0215
http://refhub.elsevier.com/S0167-4048(17)30237-7/sr0215

Originally from New Orleans, Dr. Saltaformaggio earned his
Bachelor of Science with Honors in Computer Science from the Uni-
versity of New Orleans in 2012. He received his M.S. and Ph.D. in
Computer Science at Purdue University in 2014 and 2016, respec-
tively, during which Dr. Saltaformaggio was honored with the 2017
ACM SIGSAC Doctoral Dissertation Award as well as two fellow-
ships: the 2016 Symantec Research Labs Graduate Fellowship and
the inaugural Emil Stefanov Memorial Fellowship in Computer
Science.

J. “Ram” Ramanujam is a Floating-Point Systems Endowed Chair
in Computational Methods; John E. & Beatrice L. Ritter distin-
guished professor of Electrical and Computer Engineering and the
Director of Center for Computation and Technology, Louisiana State
University. Dr. Ramanujan earned his Ph.D. from the Ohio State in
1990, and since then has been a faculty member at LSU. His re-
search interests are in compilers and runtime systems for high-
performance computing, domain-specific languages, compilers for
parallel computing, embedded systems and energy-aware com-
puting systems and cybersecurity in mobile and control systems.

Dongyan Xu is a professor of Computer Science at Purdue Uni-
versity. He is also the interim director of the Center for Education
and Research in Information Assurance and Security (CERIAS). He
has been on Purdue faculty since 2001, when he received his Ph.D.
in Computer Science from the University of Illinois at Urbana-
Champaign. His research efforts span computer systems security
and forensics, cloud computing, and virtualization, with projects
sponsored by both government agencies and industry. He is the
co-author of six award-winning papers at major conferences in se-
curity and cloud computing.

Golden G. Richard III is a professor of Computer Science and En-
gineering and Associate Director for Cybersecurity at the Center
for Computation and Technology at Louisiana State University. Dr.
Richard is also a Fellow of the American Academy of Forensic Sci-
ences (AAFS). He earned a B.S. in Computer Science (with honors)
from the University of New Orleans and an M.S. and Ph.D. from
the Ohio State University. His research interests include digital fo-
rensics, reverse engineering, offensive computing, operating systems
internals, and malware analysis.

248 c om pu t e r s & s e cu r i t y 7 3 (2 0 1 8) 2 3 5 – 2 4 8

	 Toward a more dependable hybrid analysis of android malware using aspect-oriented programming
	 Introduction
	 Background
	 Bytecode weaving

	 System design
	 Dataflow analysis
	 Taint sources
	 Taint sinks
	 Taint propagation

	 Resource abuse tracing
	 Analytics of suspicious behaviors

	 Implementation
	 Prototype implementation
	 Helper component
	 Automated testing

	 Testing and evaluation
	 Accuracy of dataflow algorithm
	 App analysis
	 Data exfiltration
	 Telephony abuse
	 Reflection and dynamic class loading
	 Native processes

	 Runtime overhead

	 Challenges and discussion
	 Limitations
	 Future work

	 Related work
	 Application-level instrumentation
	 Low-level instrumentation

	 Conclusion
	 Acknowledgment
	 References

