
























































































































































































































































































135

(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3. (e) Screen -2. (f) Screen -1.

(g) Screen 0. (h) Screen +1.

Figure 5.7.: Samsung S4 WhatsApp recovery.

(a) Screen -4. (b) Screen -3. (c) Screen -2. (d) Screen -1. (e) Screen 0.

Figure 5.8.: LG G3 WeChat recovery.



136

6 RELATED WORKS

Acquisition of Memory Images. A prerequisite of memory forensics is the timely

acquisition of a memory image from the subject device. Memory images typically con-

tain a byte-for-byte copy of the entire physical RAM of a device or the virtual memory

of an operating system or specific process(es). Traditionally, acquisition is performed

by investigators, before the subject device is powered down, using minimally inva-

sive software (e.g., fmem [55], LiME [56]) or hardware (e.g., Tibble [6], CoPilot [57])

tools. Other notable techniques have used the DMA-capable Firewire port [58] to

acquire memory images, existing hibernation or swap files [10, 59–61], or cold/warm

booted devices [62–64], but such approaches are only employed for highly specialized

investigations. A more comprehensive list of memory image acquisition tools can be

found in [65].

Android memory forensics was initially proposed during the development of mem-

ory acquisition tools for the devices. Most known among these are the software-based

LiME [56] and TrustDump [66] techniques. In an alternative approach, Hilgers et

al. [62] proposed cold-booting Android phones to perform memory forensics. Our

evaluation used both LiME and a ptrace-based tool we developed (also available with

the open source RetroScope code). Meanwhile, hardware-based memory acquisition

from a mobile device is often performed via the ARM processor’s JTAG port [67,68].

Memory Image Analysis. Prior to my work, researchers and investigators alike

considered data-structure recovery the ultimate goal of memory image forensics. Ear-

lier techniques for the analysis of memory images can be roughly divided into the

following two categories based on the data structure signatures they employ:

1. Value-invariant signatures leverage known in-memory value patterns or invari-

ants to locate data structure instances via brute-force scanning [8–13].



137

2. Structural-invariant (or “points-to”) signatures rely on the interconnection of

data structure networks. SigGraph [17] most embodies this line of work as it uses

such signatures for brute-force memory image scanning. To date, most forensic tools

and reverse engineering systems rely on traversing data structures (making use of

structural-invariant assumptions) [15, 22,69–71].

Binary reverse engineering techniques [15,16,70] or unsupervised learning [72] can

be used to reverse engineer data structure definitions (e.g., field types) from bina-

ries. Such tools are essential when the subject data structures are entirely unknown.

Building upon these, DIMSUM [18] used probabilistic inference to locate known data

structures in un-mapped memory. However, DIMSUM requires input data structure

definitions to be correct. These works are most related to VCR, but the challenge

VCR faces is unique (and not observed in any of these prior works): VCR relies

on the availability of the AOSP structure definitions but assumes that they are not

correct and therefore employs probabilistic inference to derive signatures for vendor

customization.

Compared to the work presented in this dissertation, these techniques represent

the traditional methodology of memory forensics: recovering individual pieces of raw

data. Their recovery capabilities lack any semantic contextual understanding of this

evidence. This limitation is what motivated my initial content reverse engineering

efforts pioneered by DSCRETE. My later work moved away from relying on struc-

ture definitions, most notably, as a fundamentally new memory forensics technique,

RetroScope requires neither structure signature generation nor memory scanning.

Smartphone Memory Forensics. Due to the relatively recent interest in Android

memory forensics, few works have focused specifically on the topic. DEC0DE [73]

employed probabilistic finite state machines to recover plain-text call logs and ad-

dress book entries from phone storage. Spurred by the release of Android memory

acquisition tools [56,66], several efforts began recovering app-specific data from mem-

ory images. Originally, Thing et al. [74] investigated recovering Android in-memory



138

message-based communications. Sylve et al. [7], followed by my earlier work [43],

ported Linux memory analysis tools to recover Android kernel data.

Later, Macht [75] recovered raw Dalvik-JVM control structures. Dalvik Inspector

[50] built on that to recover Java objects from app memory dumps. Apostolopoulos

et al. [76] recovered login credentials from memory images of certain apps. Lastly,

Hilgers et al. [62] proposed using memory analysis on cold-booted Android phones.

The work presented in this dissertation shares the same analysis subjects with

these efforts: Android memory images. However, these techniques focus on the re-

covery of low-level raw data (e.g., Dalvik JVM structures or app-specific login creden-

tial). My work has specifically sought to develop application generic and application

agnostic solutions for both recovering and semantic contextual evidence, which is

a step beyond only locating data structure instances. Further, the work presented

in this dissertation uniquely enables the fundamentally more powerful capability of

spatial-temporal evidence recovery from the same smartphone memory images.

Binary Component Identification and Reuse. At the heart of many of my

techniques is application logic reuse. For example, DSCRETE uses dynamic binary

program tracing to identify which functional component of a binary application is

responsible for generating forensically interesting output. They hence shares some

common underlying techniques with existing binary identification and reuse tech-

niques [77–79] and program feature identification [80,81].

Similar to how DSCRETE employed a data dependence graph, Wong et. al. [80]

used program slicing to identify the code region for a program feature. To further un-

derstand which application components contribute to an observed runtime behavior,

Greevy et al. [81] used feature-driven dynamic analysis to isolate computational units

of an application. In contrast, DSCRETE uses only an application’s data dependence

to identify candidates for later construction of a memory scanner+renderer.

Binary Code Reutilization (BCR) [77] involved using a combination of dynamic

and static binary analysis to identify and extract malware encryption and decryption



139

functions. The goal of BCR was to reuse such extracted logic as a functional compo-

nent in a different program developed by the user. Inspector Gadget [78] uses dynamic

slicing to identify specific malware behavior for extraction and later reuse/analysis.

Lin et al. [79] suggested using dynamic slicing to identify applications’ functional

components to compose reuse-based trojan attacks. In contrast, my work does not

aim to extract application logic from a target binary, but rather re-execute it in-place

to analyze a memory image and the semantic contextual evidence it contains.

Virtuoso [82] involves using dynamic slicing to identify logic from in-guest appli-

cations which could be reused for virtual machine introspection. However, Virtuoso

is not able to handle input that is not encountered during off-line training. Later,

VMST [83] and Hybrid-Bridge [84] use system-wide instruction monitoring to allow

introspection of one VM’s kernel data from another. DSCRETE is most similar to

works in this area. Compared to VMST, which redirects memory accesses for every

instruction of the reused logic, DSCRETE only needs to replace the data structure

pointer at the closure point. Further, VMST relies on system call definitions to start

logic reuse, while DSCRETE must automatically identify such a starting point (i.e.,

the closure point) in the subject binary.



140

7 CONCLUSION

In this dissertation, I have presented a line of research which has proposed a paradigm

shift in memory image analysis. My work has purposely broken away from traditional

data-recovery-oriented forensics, and instead I have developed a memory forensics

framework which leverages program analysis to automatically understand the artifacts

that applications leave in a memory image. In doing so, this framework has enabled

the recovery of spatial-temporal evidence from only such in-memory artifacts. These

four techniques, and the new program analysis techniques which enable them, have

introduced new encryption-oblivious forensics capabilities far exceeding traditional

data-structure recovery.

DSCRETE reuses an application’s own logic from a subject binary program to

uncover and render forensically interesting data in a memory image. DSCRETE is

able to recreate intuitive, human-observable application output from the memory

image, without the burden of reverse engineering data structure definitions.

VCR contributed novel memory forensics techniques to recover key data structures

in the face of vendor customizations in order to recover and render photographic

evidence from Android device memory images.

To address the real-world smartphone forensics challenge of GUI reconstruction,

I presented GUITAR. Instead of focusing on recovering individual data structures,

GUITAR pieces back together GUI data structures — already deallocated by Android

— to recreate an original GUI.

Finally, RetroScope invented a spatial-temporal memory forensics technique (and

new paradigm) that recovers multiple previous screens from an app’s memory image.

Based on a novel interleaved re-execution engine, RetroScope selectively reanimates

an app’s screen redrawing functionality without requiring any app-specific knowledge.



141

Our experiments show that DSCRETE is able to effectively identify interpreta-

tion/rendering functions in a variety of real-world applications — overcoming the long

standing content reverse engineering challenge. Our tests with a variety of different

versions of the Android framework led to several key observations about the impor-

tance of VCR rendered photographic evidence and the temporal evidence which they

provide to investigations. We found that GUITAR achieves high accuracy in GUI tree

reconstruction and redrawing, and tolerates loss of GUI data elements over time by

reconstructing partial yet meaningful GUIs. Lastly, RetroScope is shown to recover

visually accurate, temporally ordered screens (ranging from 3 to 11 screens) for a

variety of apps on three different Android phones.

In conclusion, the robust, encryption-oblivious forensics capabilities realized by

this new memory image analysis framework highlight the impactful benefit and pos-

sibilities of program-analysis-driven forensics techniques.



REFERENCES



142

REFERENCES

[1] American Civil Liberties Union. This Map Shows How the Apple-FBI Fight Was
About Much More Than One Phone. https://www.aclu.org/blog/speak-
freely/map-shows-how-apple-fbi-fight-was-about-much-more-one-
phone, 2016.

[2] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu.
DSCRETE: Automatic rendering of forensic information from memory im-
ages via application logic reuse. In Proc. USENIX Security Symposium, 2014.
Best Student Paper Award.

[3] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. VCR: App-agnostic recovery of photographic evidence from an-
droid device memory images. In Proc. ACM Conference on Computer and Com-
munications Security, 2015.

[4] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. GUITAR: Piecing together android app GUIs from memory im-
ages. In Proc. ACM Conference on Computer and Communications Security,
2015. Best Paper Award.

[5] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and
Golden G Richard III. Screen after previous screens: Spatial-temporal recre-
ation of android app displays from memory images. In Proc. USENIX Security
Symposium, 2016.

[6] Brian D Carrier and Joe Grand. A hardware-based memory acquisition procedure
for digital investigations. Digital Investigation, 1, 2004.

[7] Joe Sylve, Andrew Case, Lodovico Marziale, and Golden G Richard. Acquisition
and analysis of volatile memory from android devices. Digital Investigation, 8,
2012.

[8] The Volatility Framework. https://www.volatilesystems.com/default/
volatility.

[9] Andreas Schuster. Searching for processes and threads in microsoft windows
memory dumps. Digital Investigation, 3, 2006.

[10] Nick L Petroni Jr, Aaron Walters, Timothy Fraser, and William A Arbaugh.
FATKit: A framework for the extraction and analysis of digital forensic data
from volatile system memory. Digital Investigation, 3, 2006.

[11] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Gif-
fin. Robust signatures for kernel data structures. In Proc. ACM Conference on
Computer and Communications Security, 2009.



143

[12] Chris Betz. Memparser forensics tool. http://www.dfrws.org/2005/
challenge/memparser.shtml, 2005.

[13] C Bugcheck. Grepexec: Grepping executive objects from pool memory. In Proc.
Digital Forensic Research Workshop, 2006.

[14] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and
Xuxian Jiang. Mapping kernel objects to enable systematic integrity checking.
In Proc. ACM Conference on Computer and Communications Security, 2009.

[15] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering
of data structures from binary execution. In Proc. Network and Distributed
System Security Symposium, 2010.

[16] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic exca-
vator for reverse engineering data structures. In Proc. Network and Distributed
System Security Symposium, 2011.

[17] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
SigGraph: Brute force scanning of kernel data structure instances using graph-
based signatures. In Proc. Network and Distributed System Security Symposium,
2011.

[18] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu.
DIMSUM: Discovering semantic data of interest from un-mappable memory with
confidence. In Proc. Network and Distributed System Security Symposium, 2012.

[19] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Pro-
cessing Letters, 29(3), 1988.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing customized program analysis tools with dynamic instrumentation. In ACM
SIGPLAN Notices, volume 40, 2005.

[21] Daniel Ayers. A second generation computer forensic analysis system. Digital
Investigation, 6, 2009.

[22] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented
programming. In Proc. ACM Conference on Computer and Communications
Security, 2013.

[23] Riley v. California. 134 S. Ct. 2473, (2014).

[24] Brian D Carrier. Risks of live digital forensic analysis. Communications of the
ACM, 49(2), 2006.

[25] Frank Adelstein. Live forensics: Diagnosing your system without killing it first.
Communications of the ACM, 49(2), 2006.

[26] Rolando R. Lopez. Battling Human Trafficking with Big Data. Invited talk,
USENIX Security Symposium, 2014.

[27] Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics and image
processing, 14(3), 1980.



144

[28] Google, Inc. Android dashboards - platform versions. https://developer.
android.com/about/dashboards/index.html, 2015.

[29] Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. Peeking into your app without
actually seeing it: UI state inference and novel android attacks. In Proc. USENIX
Security Symposium, 2014.

[30] Chia-Chi Lin, Hongyang Li, Xiaoyong Zhou, and XiaoFeng Wang. Screenmilker:
How to milk your android screen for secrets. In Proc. Network and Distributed
System Security Symposium, 2014.

[31] Gates Rubber Co. v. Bando Chemical Industries, Ltd. 9 F. 3d 823, (1993).

[32] Schaghticoke Tribal Nation v. Kempthorne. 587 F. Supp. 2d 389, (2008).

[33] US v. Scholle. 553 F. 2d 1109, (1977).

[34] US v. Vela. 673 F. 2d 86, (1982).

[35] US v. Bonallo. 858 F. 2d 1427, (1988).

[36] John Paul Mitchell Systems v. Quality King Distributors, Inc. 106 F. Supp. 2d
462, (2000).

[37] Pearl Brewing Co. v. Jos. Schlitz Brewing Co. 415 F. Supp. 1122, (1976).

[38] Illinois Tool Works v. Metro Mark Products, Ltd. 43 F. Supp. 2d 951, (1999).

[39] Nat. Union Elec. Corp. v. Matsushita Elec. Indus. Co. 494 F. Supp. 1257, (1980).

[40] John Ashcroft, Deborah J Daniels, and Sara V Hart. Forensic examination of
digital evidence: A guide for law enforcement. U.S. National Institute of Justice,
Office of Justice Programs, NIJ Special Report, NCJ 199408, 2004.

[41] H Marshall Jarrett, Michael W Bailie, E Hagen, and N Judish. Searching and
seizing computers and obtaining electronic evidence in criminal investigations.
U.S. Department of Justice, Computer Crime and Intellectual Property Section
Criminal Division, 2009.

[42] 7 American Law Reports. 4th, 8, 2b.

[43] Brendan Saltaformaggio. Forensic carving of wireless network information from
the android linux kernel. University of New Orleans Theses and Dissertations,
Paper 20, 2012.

[44] Michael Graves. Digital Archaeology: The Art and Science of Digital Forensics.
Addison-Wesley, 2013.

[45] Hungarian algorithm method source. https://github.com/maandree/
hungarian-algorithm-n3/blob/master/hungarian.c, 2014.

[46] Mathias Lux and Savvas A Chatzichristofis. Lire: Lucene image retrieval: An
extensible java CBIR library. In Proc. ACM International Conference on Multi-
media, 2008.



145

[47] Mathias Lux. Content based image retrieval with lire. In Proc. ACM Interna-
tional Conference on Multimedia, 2011.

[48] Savvas A Chatzichristofis and Yiannis S Boutalis. CEDD: Color and edge di-
rectivity descriptor: a compact descriptor for image indexing and retrieval. In
Computer Vision Systems. 2008.

[49] Open Whisper Systems. TextSecure Private Messenger. https://play.google.
com/store/apps/details?id=org.thoughtcrime.securesms, 2015.

[50] 504ENSICS Labs. Dalvik Inspector. http://www.504ensics.com/automated-
volatility-plugin-generation-with-dalvik-inspector/, 2013.

[51] George H Mealy. A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[52] Signal, the Snowden-Approved Crypto App, Comes to Android.
http://www.wired.com/2015/11/signals-snowden-approved-phone-
crypto-app-comes-to-android/, 2015.

[53] ISIS still using Telegram channels - Business Insider. http://www.
businessinsider.com/isis-telegram-channels-2015-11, 2015.

[54] Apple vs. the FBI: Google, WhatsApp, John McAfee and more are taking
sides - LA Times. http://www.latimes.com/business/technology/la-fi-
tn-tech-response-apple-20160218-snap-htmlstory.html, 2016.

[55] Ivor Kollár. Forensic ram dump image analyser. Master’s Thesis, Charles Uni-
versity in Prague, 2010.

[56] 504ENSICS Labs. LiME Linux Memory Extractor. https://github.com/
504ensicsLabs/LiME, 2013.

[57] Nick Petroni, Timothy Fraser, Jesus Molina, and William Arbaugh. Copilot - a
coprocessor-based kernel runtime integrity monitor. In Proc. USENIX Security
Symposium, 2004.

[58] Michael Becher, Maximillian Dornseif, and Christian Klein. Firewire: All your
memory are belong to us. CanSecWest, 2005.

[59] Jesse D Kornblum. Using every part of the buffalo in windows memory analysis.
Digital Investigation, 4, 2007.

[60] Michael Gruhn. Windows NT pagefile.sys virtual memory analysis. In Proc. IT
Security Incident Management & IT Forensics (IMF), 2015.

[61] Golden G Richard and Andrew Case. In lieu of swap: Analyzing compressed
ram in mac os x and linux. Digital Investigation, 11, 2014.

[62] Christian Hilgers, Holger Macht, Tilo Muller, and Michael Spreitzenbarth. Post-
mortem memory analysis of cold-booted android devices. In Proc. IT Security
Incident Management & IT Forensics (IMF), 2014.



146

[63] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. Lest we remember: Cold-boot attacks on encryption keys. In Proc.
USENIX Security Symposium, 2008.

[64] Timothy Vidas. Volatile memory acquisition via warm boot memory survivabil-
ity. In Proc. Hawaii International Conference on System Sciences, 2010.

[65] Forensics wiki - memory imaging tools. http://forensicswiki.org/wiki/
Tools:Memory_Imaging, 2015.

[66] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. Trustdump:
Reliable memory acquisition on smartphones. In Proc. European Symposium on
Research in Computer Security. 2014.

[67] Seung Jei Yang, Jung Ho Choi, Ki Bom Kim, and Taejoo Chang. New acquisition
method based on firmware update protocols for android smartphones. Digital
Investigation, 14, 2015.

[68] Advanced jtag mobile device forensics training. http://www.teeltech.com/
mobile-device-forensics-training/jtag-forensics/, 2015.

[69] Andrew Case, Andrew Cristina, Lodovico Marziale, Golden G Richard, and Vas-
sil Roussev. FACE: Automated digital evidence discovery and correlation. Digital
Investigation, 5, 2008.

[70] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled re-
verse engineering of types in binary programs. In Proc. Network and Distributed
System Security Symposium, 2011.

[71] Paul Movall, Ward Nelson, and Shaun Wetzstein. Linux physical memory anal-
ysis. In Proc. USENIX Annual Technical Conference, FREENIX Track, 2005.

[72] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T King. Digging for data
structures. In Proc. Symposium on Operating Systems Design and Implementa-
tion, 2008.

[73] Robert Walls, Brian N Levine, and Erik G Learned-Miller. Forensic triage for
mobile phones with DEC0DE. In Proc. USENIX Security Symposium, 2011.

[74] Vrizlynn LL Thing, Kian-Yong Ng, and Ee-Chien Chang. Live memory forensics
of mobile phones. Digital Investigation, 7, 2010.

[75] Holger Macht. Live memory forensics on android with volatility. Friedrich-
Alexander University Erlangen-Nuremberg, 2013.

[76] Dimitris Apostolopoulos, Giannis Marinakis, Christoforos Ntantogian, and
Christos Xenakis. Discovering authentication credentials in volatile memory
of android mobile devices. In Collaborative, Trusted and Privacy-Aware e/m-
Services. 2013.

[77] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. Binary
code extraction and interface identification for security applications. In Proc.
Network and Distributed System Security Symposium, 2010.



147

[78] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin Kirda. In-
spector Gadget: Automated extraction of proprietary gadgets from malware
binaries. In Proc. IEEE Symposium on Security and Privacy, 2010.

[79] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Reuse-oriented camouflaging
trojan: Vulnerability detection and attack construction. In Proc. IEEE/IFIP
International Conference on Dependable Systems and Networks, 2010.

[80] W Eric Wong, Swapna S Gokhale, and Joseph R Horgan. Quantifying the close-
ness between program components and features. Journal of Systems and Soft-
ware, 54(2), 2000.

[81] Orla Greevy and Stéphane Ducasse. Correlating features and code using a com-
pact two-sided trace analysis approach. In Proc. European Conference on Soft-
ware Maintenance and Reengineering, 2005.

[82] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. Virtuoso: Narrowing the semantic gap in virtual machine introspection. In
Proc. IEEE Symposium on Security and Privacy, 2011.

[83] Yangchun Fu and Zhiqiang Lin. Space traveling across VM: Automatically bridg-
ing the semantic gap in virtual machine introspection via online kernel data
redirection. In Proc. IEEE Symposium on Security and Privacy, 2012.

[84] Yangchun Saberi, Alireza Fu and Zhiqiang Lin. Hybrid-Bridge: Efficiently bridg-
ing the semantic gap in virtual machine introspection via decoupled execution
and training memoization. In Proc. Network and Distributed System Security
Symposium, 2013.



VITA



148

VITA

Brendan Dominic Saltaformaggio earned a Master of Science in Computer Science

from Purdue University and a Bachelor of Science with Honors in Computer Science

from the University of New Orleans in New Orleans, LA (where he was born and

raised). His research interests lie in computer systems security and cyber forensics

with focuses on memory forensics, binary analysis and instrumentation, vetting of

untrusted software, and cloud computing security. His work has been awarded the

Best Student Paper Award at Usenix Security 2014 and the Best Paper Award at

ACM CCS 2015. His Ph.D. research has been partially funded via the 2016 Symantec

Research Labs Graduate Fellowship, and he was recently honored as the inaugural

recipient of the Emil Stefanov Memorial Fellowship. In the Spring of 2017, he will

begin a brief appointment as a postdoctoral researcher with his advisors at Purdue.

At the time of writing this dissertation, he is beginning his job search for a position

as an Assistant Professor to begin in the Fall of 2017.


