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(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3. (e) Screen -2. (f) Screen -1.

(g) Screen 0. (h) Screen +1.

Figure 5.7.: Samsung S4 WhatsApp recovery.

(a) Screen -4. (b) Screen -3. (c) Screen -2. (d) Screen -1. (e) Screen 0.

Figure 5.8.: LG G3 WeChat recovery.
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6 RELATED WORKS

Acquisition of Memory Images. A prerequisite of memory forensics is the timely

acquisition of a memory image from the subject device. Memory images typically con-

tain a byte-for-byte copy of the entire physical RAM of a device or the virtual memory

of an operating system or specific process(es). Traditionally, acquisition is performed

by investigators, before the subject device is powered down, using minimally inva-

sive software (e.g., fmem [55], LiME [56]) or hardware (e.g., Tibble [6], CoPilot [57])

tools. Other notable techniques have used the DMA-capable Firewire port [58] to

acquire memory images, existing hibernation or swap files [10, 59–61], or cold/warm

booted devices [62–64], but such approaches are only employed for highly specialized

investigations. A more comprehensive list of memory image acquisition tools can be

found in [65].

Android memory forensics was initially proposed during the development of mem-

ory acquisition tools for the devices. Most known among these are the software-based

LiME [56] and TrustDump [66] techniques. In an alternative approach, Hilgers et

al. [62] proposed cold-booting Android phones to perform memory forensics. Our

evaluation used both LiME and a ptrace-based tool we developed (also available with

the open source RetroScope code). Meanwhile, hardware-based memory acquisition

from a mobile device is often performed via the ARM processor’s JTAG port [67,68].

Memory Image Analysis. Prior to my work, researchers and investigators alike

considered data-structure recovery the ultimate goal of memory image forensics. Ear-

lier techniques for the analysis of memory images can be roughly divided into the

following two categories based on the data structure signatures they employ:

1. Value-invariant signatures leverage known in-memory value patterns or invari-

ants to locate data structure instances via brute-force scanning [8–13].
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2. Structural-invariant (or “points-to”) signatures rely on the interconnection of

data structure networks. SigGraph [17] most embodies this line of work as it uses

such signatures for brute-force memory image scanning. To date, most forensic tools

and reverse engineering systems rely on traversing data structures (making use of

structural-invariant assumptions) [15, 22,69–71].

Binary reverse engineering techniques [15,16,70] or unsupervised learning [72] can

be used to reverse engineer data structure definitions (e.g., field types) from bina-

ries. Such tools are essential when the subject data structures are entirely unknown.

Building upon these, DIMSUM [18] used probabilistic inference to locate known data

structures in un-mapped memory. However, DIMSUM requires input data structure

definitions to be correct. These works are most related to VCR, but the challenge

VCR faces is unique (and not observed in any of these prior works): VCR relies

on the availability of the AOSP structure definitions but assumes that they are not

correct and therefore employs probabilistic inference to derive signatures for vendor

customization.

Compared to the work presented in this dissertation, these techniques represent

the traditional methodology of memory forensics: recovering individual pieces of raw

data. Their recovery capabilities lack any semantic contextual understanding of this

evidence. This limitation is what motivated my initial content reverse engineering

efforts pioneered by DSCRETE. My later work moved away from relying on struc-

ture definitions, most notably, as a fundamentally new memory forensics technique,

RetroScope requires neither structure signature generation nor memory scanning.

Smartphone Memory Forensics. Due to the relatively recent interest in Android

memory forensics, few works have focused specifically on the topic. DEC0DE [73]

employed probabilistic finite state machines to recover plain-text call logs and ad-

dress book entries from phone storage. Spurred by the release of Android memory

acquisition tools [56,66], several efforts began recovering app-specific data from mem-

ory images. Originally, Thing et al. [74] investigated recovering Android in-memory
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message-based communications. Sylve et al. [7], followed by my earlier work [43],

ported Linux memory analysis tools to recover Android kernel data.

Later, Macht [75] recovered raw Dalvik-JVM control structures. Dalvik Inspector

[50] built on that to recover Java objects from app memory dumps. Apostolopoulos

et al. [76] recovered login credentials from memory images of certain apps. Lastly,

Hilgers et al. [62] proposed using memory analysis on cold-booted Android phones.

The work presented in this dissertation shares the same analysis subjects with

these efforts: Android memory images. However, these techniques focus on the re-

covery of low-level raw data (e.g., Dalvik JVM structures or app-specific login creden-

tial). My work has specifically sought to develop application generic and application

agnostic solutions for both recovering and semantic contextual evidence, which is

a step beyond only locating data structure instances. Further, the work presented

in this dissertation uniquely enables the fundamentally more powerful capability of

spatial-temporal evidence recovery from the same smartphone memory images.

Binary Component Identification and Reuse. At the heart of many of my

techniques is application logic reuse. For example, DSCRETE uses dynamic binary

program tracing to identify which functional component of a binary application is

responsible for generating forensically interesting output. They hence shares some

common underlying techniques with existing binary identification and reuse tech-

niques [77–79] and program feature identification [80,81].

Similar to how DSCRETE employed a data dependence graph, Wong et. al. [80]

used program slicing to identify the code region for a program feature. To further un-

derstand which application components contribute to an observed runtime behavior,

Greevy et al. [81] used feature-driven dynamic analysis to isolate computational units

of an application. In contrast, DSCRETE uses only an application’s data dependence

to identify candidates for later construction of a memory scanner+renderer.

Binary Code Reutilization (BCR) [77] involved using a combination of dynamic

and static binary analysis to identify and extract malware encryption and decryption
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functions. The goal of BCR was to reuse such extracted logic as a functional compo-

nent in a different program developed by the user. Inspector Gadget [78] uses dynamic

slicing to identify specific malware behavior for extraction and later reuse/analysis.

Lin et al. [79] suggested using dynamic slicing to identify applications’ functional

components to compose reuse-based trojan attacks. In contrast, my work does not

aim to extract application logic from a target binary, but rather re-execute it in-place

to analyze a memory image and the semantic contextual evidence it contains.

Virtuoso [82] involves using dynamic slicing to identify logic from in-guest appli-

cations which could be reused for virtual machine introspection. However, Virtuoso

is not able to handle input that is not encountered during off-line training. Later,

VMST [83] and Hybrid-Bridge [84] use system-wide instruction monitoring to allow

introspection of one VM’s kernel data from another. DSCRETE is most similar to

works in this area. Compared to VMST, which redirects memory accesses for every

instruction of the reused logic, DSCRETE only needs to replace the data structure

pointer at the closure point. Further, VMST relies on system call definitions to start

logic reuse, while DSCRETE must automatically identify such a starting point (i.e.,

the closure point) in the subject binary.
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7 CONCLUSION

In this dissertation, I have presented a line of research which has proposed a paradigm

shift in memory image analysis. My work has purposely broken away from traditional

data-recovery-oriented forensics, and instead I have developed a memory forensics

framework which leverages program analysis to automatically understand the artifacts

that applications leave in a memory image. In doing so, this framework has enabled

the recovery of spatial-temporal evidence from only such in-memory artifacts. These

four techniques, and the new program analysis techniques which enable them, have

introduced new encryption-oblivious forensics capabilities far exceeding traditional

data-structure recovery.

DSCRETE reuses an application’s own logic from a subject binary program to

uncover and render forensically interesting data in a memory image. DSCRETE is

able to recreate intuitive, human-observable application output from the memory

image, without the burden of reverse engineering data structure definitions.

VCR contributed novel memory forensics techniques to recover key data structures

in the face of vendor customizations in order to recover and render photographic

evidence from Android device memory images.

To address the real-world smartphone forensics challenge of GUI reconstruction,

I presented GUITAR. Instead of focusing on recovering individual data structures,

GUITAR pieces back together GUI data structures — already deallocated by Android

— to recreate an original GUI.

Finally, RetroScope invented a spatial-temporal memory forensics technique (and

new paradigm) that recovers multiple previous screens from an app’s memory image.

Based on a novel interleaved re-execution engine, RetroScope selectively reanimates

an app’s screen redrawing functionality without requiring any app-specific knowledge.
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Our experiments show that DSCRETE is able to effectively identify interpreta-

tion/rendering functions in a variety of real-world applications — overcoming the long

standing content reverse engineering challenge. Our tests with a variety of different

versions of the Android framework led to several key observations about the impor-

tance of VCR rendered photographic evidence and the temporal evidence which they

provide to investigations. We found that GUITAR achieves high accuracy in GUI tree

reconstruction and redrawing, and tolerates loss of GUI data elements over time by

reconstructing partial yet meaningful GUIs. Lastly, RetroScope is shown to recover

visually accurate, temporally ordered screens (ranging from 3 to 11 screens) for a

variety of apps on three different Android phones.

In conclusion, the robust, encryption-oblivious forensics capabilities realized by

this new memory image analysis framework highlight the impactful benefit and pos-

sibilities of program-analysis-driven forensics techniques.
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